中国乘余定理和韩信

Chinese Remainder Theorem

Background Story:

back in the Han dynasty, there is a famous General Han Xin. In order to prevent the spy in the army to detect the number of his soldiers, he used an advanced Counting System (韩信点兵).
Instead off directly counting from 1 to n, he asked his soldiers to number off from 3 times. First time 1 to 3, then 1 to 5 and finally 1 to 7.

What is the number x ?
x mod 3≡ 2
x mod 5≡ 3
x mod 7≡ 2

By doing this Han Xin Counting Off Algorithm, he is pretty confident the spies could not figure out the accurate number of total soldiers, Unless the spy knew Number Theory or have a python program 😝 .

image

The solution to the Han Xin Counting Algorithm was written in a poem:

3 friends walk for 70 miles.
5 plum tree with 21 blossom flowers.
7 kids party in the full moon(15).
Mod 105 you would know!

三人同行七十稀, 五树梅花廿一枝, 七子团圆正半月, 除百零五便得知!

Solutions:

Direction Solution From the Poem:

#1\. Multiply the Residue of according equation.
2*70 + 3*31 + 2*15=233
#2\. Mod the Least Common Multiple of (3,5,7)
233 mod 105= 23

Note: The solution is NOT unique any multiple of 105 can be added to the solution and still satisfy the condition, such as 128, 233, 338 ....

The solution from Python Code:

from functools import reduce
def chinese_remainder(n, a):
    sum=0
    prod=reduce(lambda a, b: a*b, n)
    for n_i, a_i in zip(n,a):
        p=prod/n_i
        sum += a_i* mul_inv(p, n_i)*p
    return sum % prod

def mul_inv(a, b):
    b0= b
    x0, x1= 0,1
    if b== 1: return 1
    while a>1 :
        q=a// b
        a, b= b, a%b
        x0, x1=x1 -q *x0, x0
    if x1<0 : x1+= b0
    return x1

n=[3,5,7]
a=[2,3,2]
print(chinese_remainder(n,a))
23.0

General Solution:

How do we find a general solution for Chinese Remainder Theorem Problems?

Step1.Find the numbers for 1≡ Mod(ni, nj) for pairwised
coprime
n1... nm *
Step2.Multiply the residue to each corresponding number in 1.
Step3. Add all the number in Step2 and mod N=n1
n2..*nm

n mod3 =2
n mod5 =3
n mod7 =2

Step1.
# Find remainder 1 for mod 3 
5*7=35 mod 3= 2
5*7*2=70 mod 3 =1 *
# Find remainder 1 for mod 5
3*7 mod 5 =1 *
# Find remainder 1 for mod 7
3*5 mod 7 =1 *

Step 2\. Add the Residue* number in Step 1
2*70 + 3*21+ 2*15=233

Step 3\. Find remainder mod 3*5*7
233 mod 105 =23
image

Why this Algorithm works? Now introduce the famous Chinese Remainder Theorem:

Chinese Remainder Theorem :

if the ni are pairwise coprime, and if a1, ..., ak are integers such that 0 ≤ ai < ni for every i, then there is one and only one integer x, such that 0 ≤ x < N and the remainder of the Euclidean division of x by ni is ai for every i.

image

Summary:

The solution of Chinese Remainder Theorem problem is relatively easy to find as long as the problem satisfy the pairwise co-prime assumption, however, the idea and concept of Ring Isomorphism behind the theorem is complicated and took a long time for me to really understand.

Note: I really loved Chinese Remainder theorem when I was in School, not only because that's probably the only thing in Math book that's from China, but also the interesting story behinds it. I still doubt if Han Xin really used the Chinese Remainder Theorem as Soldier Counting System, because how would he know if he has 23 or 105 or 233 soldiers...
p.s. my friend used to joke it is Tibetan Remainder Theorem

Happy Studying!🐵

Reference :https://en.wikipedia.org/wiki/Chinese_remainder_theorem

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,319评论 0 10
  • 今天第一场打了76(+4),总体成绩算很不错。明天第二场,十分关键,决定了我能不能进后天的总决赛。趁今晚要交007...
    小懿米阅读 112评论 0 1
  • 老是睡不着
    慢慢yoyo阅读 134评论 0 0
  • 这是一篇我写的旧文 ,原先存在jerodyan.wordpress.comPosted on December 2...
    JerodYan阅读 196评论 0 1