1912年4月15日凌晨2点20分,“永不沉没”的“泰坦尼克”走完了它短暂的航程,缓缓沉入大西洋这座安静冰冷的坟墓。
欢迎你们说我幼稚荒诞,也欢迎你们继续成熟苍凉。说起来,titanic是我至今觉得最为美妙的爱情电影,如饮蜜酒,甘不可言。这是一份绚烂到极致,使得人类的大难做了背景,还妄想突破时间和生死直达永恒的爱情。露丝从救生船上一跃而起,扑到窗边的一刹,因了这份勇敢和贪求,最为美丽。在有生的瞬间能遇到你,竟花光所有运气。
you're going to go on and you're going to make babies and watch them grow and you're going to die an old lady.
你将长寿,子孙满堂
乘客存活数据:http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt
这里用决策树算法,按照乘客的社会阶层(pclass),年龄(age), 性别(sex)三个因素,来预测乘客最终的生存状况(survived)
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
from sklearn.ensemble import RandomForestClassifier
def descsion():
# 获取数据, 提取特征值和目标值
Titanic_data = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")
# 打印字段名
print(Titanic_data.columns)
# 分割出特定的字段(社会阶层, 年龄, 性别)对生存率的影响
titanic_x = Titanic_data[["pclass", "age", "sex"]]
titanic_y = Titanic_data[["survived"]]
# 处理缺失值
titanic_x["age"].fillna(titanic_x['age'].mean(), inplace=True)
# 进行数据的分割
x_train, x_test, y_train, y_test = train_test_split(titanic_x, titanic_y, train_size=0.25)
# 对特征们进行字典特征抽取
dict = DictVectorizer(sparse=False)
x_train = dict.fit_transform(x_train.to_dict(orient="records"))
x_test = dict.transform(x_test.to_dict(orient="records"))
# 查看抽取后特征的名字
feature_names = dict.get_feature_names()
print(feature_names)
# 进行决策树预测(可选:限制决策树最大深度为10)
my_decision_tree = DecisionTreeClassifier(max_depth=10)
my_decision_tree.fit(x_train, y_train)
print("单棵决策树预测的准确率为:", my_decision_tree.score(x_test, y_test))
# 将树的结构保存到本地
export_graphviz(my_decision_tree, "./my_decision_tree.dot", feature_names = feature_names)
"""
将dot文件装换为png的方法
在本机安装graphviz ubuntu版安装: sudo apt install graphviz mac版安装: brew install graphviz
然后运行命令: dot -Tpng my_decision_tree.dot -o my_decision_tree.png
生成png格式图片my_desion_tree.png
"""
# 随机树森林算法, 建立20棵数, 树的最大深度为15
rf = RandomForestClassifier(n_estimators=21, max_depth=20)
rf.fit(x_train, y_train)
print("随机数森林预测的准确率为:", rf.score(x_test, y_test))
if __name__ == '__main__':
descsion()
使用graphviz绘制决策树
1. 安装graphviz
- ubuntu安装方式:
sudo apt install graphviz
- mac安装方式
brew install graphviz
2. 通过终端,在.dot所在的目录运行命令,将.dot转换为png图片
dot -Tpng my_decision_tree.dot -o my_decision_tree.png
那些古板的绅士们要死得很体面。女士和儿童先上,男人们等待死亡。船上的乐队,从容演奏到了最后一刻。谁能告诉我,身边是世界末日的惊恐,但依然安静地演奏,是因为拥有了什么样的力量? “很高兴今晚和你们合作。”想起另外一部电影的一句台词:“假装我们明天还会再见。”生离死别,说了再见,但是没有明天。