高级heatmap绘制ComplexHeatmap

pheatmap
ComplexHeatmap handbook
中文介绍
实例
我的简单一个例子,注意只要理解注释文件要与heatmap文件列名行名一致就行,这一点与pheatmap其实是一致的

rm(list=ls())
suppressMessages(library(ComplexHeatmap))
suppressMessages(library(circlize))
suppressMessages(library(pheatmap))
suppressMessages(library(RColorBrewer))

pathway_data<-read.table("~/Modules_list/IPA/modules_all_IPA.txt",row.names = 1,sep = "\t",check.names = F,header = T)
nes<-read.csv("~/enrichment_nes.csv",check.names = F,header = T,row.names = 2)
padj<-read.csv("~/enrichment_padj.csv",check.names = F,header = T,row.names = 2)
precentage<-read.table("~/Modules_list/module_precentage.txt",sep="\t",row.names = 1,header =T )
precentage<-precentage[row.names(nes),]

ann<-data.frame(nes$Lob_Inflam,padj$Lob_Inflam)
row.names(ann)<-row.names(nes)
colnames(ann)<-c("NES","padj")
ann<-cbind(ann,precentage)

#define colors
col_fun1 = colorRamp2(c(10, 10, 250), c("#54C6DC", "black", "yellow"))
col_fun2 = colorRamp2(c(0, 100), c("white", "#E7298A"))
col_fun3 =colorRamp2(c(-3, 2.2), c("#BEBADA","#FB8072"))
  

col1 = colorRamp2(c(0, 5,15), c("navy", "white","firebrick3"))
col2=brewer.pal(5, "Set3")


pathway_data<-pathway_data[1:20,]

ha1 = HeatmapAnnotation(Novel_genes = anno_barplot(ann$nove_gene, height = unit(1.5, "cm"), 
                                          gp = gpar(fill = col2)))

ha2=HeatmapAnnotation(Known_transcripts = ann$known_transcripts,
Novel_transcripts = ann$novel_transcripts,
Lob_Inflam_NES=ann$NES,
col = list(Known_transcripts=col_fun1,Novel_transcripts=col_fun2,Lob_Inflam_NES=col_fun3),
height = unit(0.5, "cm"))



Heatmap(pathway_data, top_annotation = ha1,bottom_annotation = ha2,
            cluster_rows=T,cluster_columns = F,
            col=col1)

例子2

data_matrix<-data[,c(3,6)]

col_fun1 = colorRamp2(c(0,4), c("white", "#E7298A"))

ha=rowAnnotation(     Events=data$Feature_type,
                      Gene_type = data$Gene_type,
                      log_pvalue = data$`-log10(pvalue)`,
                      
                      col = list(Events=c("ES"="#D9D9D9","IR"="#BC80BD","ALT3"="#80B1D3","ALT5"="#FFED6F"),
                                 log_pvalue=col_fun1,
                                 Gene_type=c("lncRNA"= "#FFFFB3"  , "protein_coding"="#8DD3C7")))
#row_ha = rowAnnotation(log_pvalue = data$`-log10(pvalue)`,Gene_type = data$Gene_type)


col1 = colorRamp2(c(0, 0.4,1), c("navy", "white","firebrick3"))
#col1 = colorRamp2(c(0, 0.5,1), c("blue", "black","yellow"))
#col1 = colorRamp2(c(0,1), c("blue","yellow"))
Heatmap(data_matrix, right_annotation = ha,
        cluster_rows=T,cluster_columns = F,
        col=col1,border = F)
image.png

例子3

prepare_heatmap_data<-function(data_median){
  data_median_rt<-data_median %>% spread(key = transcript_id,-new_sample)
  row.names(data_median_rt)<-as.character(data_median_rt$new_sample)
  data_median_rt<-data_median_rt[,-1]
  data_median_rt_zsocre<-t(apply(data_median_rt,2,FUN = function(x){return(scale(x,center = T,scale = T))}))
  colnames(data_median_rt_zsocre)<-as.character(row.names(data_median_rt))
  colnames(data_median_rt_zsocre)<-sapply(colnames(data_median_rt_zsocre),FUN = function(x){return(gsub('.$', '', x))})
  return(data_median_rt_zsocre)
}

human_data_zscore<-na.omit(prepare_heatmap_data(human_data_median))

prepare_ann<-function(degs,data_zscore){
  row_ann<-degs[,c("transcript_id","type","class_code_define")]
  row.names(row_ann)<-as.character(row_ann$transcript_id)
  row_ann<-row_ann[row.names(data_zscore),]
  
  col_ann<-data.frame(samples=colnames(data_zscore),treatment=sapply(colnames(data_zscore),FUN = function(x){return(gsub('.$', '', x))}))
  row.names(col_ann)<-as.character(colnames(data_zscore))
  return(list(row_ann=row_ann,col_ann=col_ann))
}

human_row_ann<-prepare_ann(degs=human_degs,data_zscore = human_data_zscore)$row_ann
human_col_ann<-prepare_ann(degs=human_degs,data_zscore = human_data_zscore)$col_ann

mouse_row_ann<-prepare_ann(degs=mouse_degs,data_zscore = mouse_data_zscore)$row_ann
mouse_col_ann<-prepare_ann(degs=mouse_degs,data_zscore = mouse_data_zscore)$col_ann
pal_npg("nrc")(6)
pal_jco()(6)
human_row_ha = rowAnnotation(Transcript_Type = human_row_ann$type,Type =  human_row_ann$class_code_define,
                             col = list(Transcript_Type = c("lncRNA" ="red", "others" = "#3C5488FF", "processed_pseudogene" = "#00A087FF","protein_coding"="grey"),
                                        Type=c("Different" = "#EFC000FF", "Matched" =  "#0073C2FF","Uncertain" = "#868686FF") ))
human_col_ha=columnAnnotation(Treatment=human_col_ann$treatment,
                              col = list(Treatment = c("Fast" = "#E64B35FF","AL"="#4DBBD5FF"))
                              )
col1 = colorRamp2(c(-2, 0,2), c("navy", "white","firebrick3"))
Heatmap(human_data_zscore, right_annotation = human_row_ha,top_annotation = human_col_ha,
        cluster_rows=T,cluster_columns = T,
        col=col1,border = F,show_row_names =F)
image.png

例子4

set.seed(14437)
frequence_degs_zscore_matrix<-as.matrix(frequence_degs_zscore[,1:8])

ha1 = HeatmapAnnotation(Gene_Change = anno_summary(height = unit(1, "cm")))
ht_list1<-Heatmap(frequence_degs_zscore$degs_status,  name = "Gene_Change", top_annotation = ha1, width = unit(1, "cm"),col =c("Yes"= "#FFED6F", "Not"="#8DD3C7"))

ha2 = HeatmapAnnotation(summary = anno_summary(height = unit(1, "cm")))
ht_list2<-Heatmap(frequence_degs_zscore$motif,  name = "Motif", top_annotation = ha2, width = unit(1, "cm"),col = c("GGACT" = "#EFC000FF", "GGACC" =  "#0073C2FF","GGACA" = "#868686FF","AGACT"="#DF3D8C"))

# ha3 = HeatmapAnnotation(summary = anno_summary(height = unit(1, "cm")))
# ht_list3<-Heatmap(frequence_degs_zscore$new_type,  name = "Gene_Type", top_annotation = ha3, width = unit(1, "cm"),col = c("lncRNA" ="red", "others" = "#3C5488FF", "processed_pseudogene" = "#00A087FF","protein_coding"="grey"))
col = colorRamp2(c(-2, 0,2), c("navy", "white","firebrick3"))
ht_list_main= Heatmap(frequence_degs_zscore_matrix, name = "Z-score",col = col,
                  rect_gp =gpar(col = "white", lwd = 0.01),
                   cluster_rows=T,cluster_columns = T,show_row_names=F,border="black",border_gp = gpar(col = "black", lty = 2),
                   width = 1,height = 2)
ht_list_main+ht_list1+ht_list2
image.png

环状heatmap

参考1
参考2

suppressMessages(library(dendextend))
suppressMessages(library(circlize))
suppressMessages(library(ComplexHeatmap))
tpm_pick_zsocre<-t(scale(t(tpm_pick)))

dend<-as.dendrogram(hclust(dist(tpm_pick_zsocre)))
#check the dend list to determine the n 
n=4
dend<-dend %>% set("branches_k_color",k=n)
plot(dend)
mat2<-t(tpm_pick_zsocre[order.dendrogram(dend),])
lable1 <- row.names(mat2)
lable2 <- colnames(mat2)

col_fun <- colorRamp2(c(-2,  0, 2), c("navy", "white", "firebrick3"))
col_mat <- col_fun(mat2)
nr <- nrow(mat2)
nc <- ncol(mat2)

###start to plot
#set the par
par(mar <- c(0,0,0,0)) # the empty are
circos.clear();
circos.par(canvas.xlim = c(-1,1),#the smaller number the bigger figure
           canvas.ylim = c(-1,1),
           cell.padding = c(0,0,0,0),
           gap.degree = 90)
factors <- "a"
circos.initialize(factors, xlim = c(0, ncol(mat2)))

#prepaer the main part
circos.track(ylim = c(0, nr),bg.border = NA,track.height = 0.1*nr,
             panel.fun = function(x, y) {
               for(i in 1:nr) {
                 circos.rect(xleft = 1:nc - 1, ybottom = rep(nr - i, nc),
                             xright = 1:nc, ytop = rep(nr - i + 1, nc),
                             border = "black",#change the colr
                             col = col_mat[i,])
                 circos.text(x = nc,
                             y = 8.1 -i,#you can chenge here to ajust the location of your sample name
                             labels = lable1[i],
                             facing = "downward", niceFacing = TRUE,
                             cex = 0.5,#chang the size
                             adj = c(-0.2, 0))
               }
             })



#the leable outside the heatmap

for(i in 1:nc){
  circos.text(x = i-0.35,#chang the relative location of leable to the heatmap cell
              y = 7,
              labels = lable2[i],
              facing = "clockwise", niceFacing = TRUE,
              cex = 0.4,adj = c(-0.6, 0))#use the adjust to ajust the location
}

##add the hcluster inside the heatmap

max_height <-max(attr(dend, "height"))
circos.track(ylim = c(0, max_height),bg.border = NA,track.height = 0.1,#ajust the height value to put it inside
             panel.fun = function(x, y){
               circos.dendrogram(dend = dend,
                                 max_height = max_height)
             })
circos.clear()
###add the legend

lgd <- Legend(at = c(-2,-1, 0, 1, 2), col_fun = col_fun,
              title_position = "topcenter",title = "Z-score")
draw(lgd, x = unit(0.6, "npc"), y = unit(0.8, "npc"))



image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352