文章
http://www.jianshu.com/p/289cf670733e ,主要讲 JDK 8
http://www.jianshu.com/p/487d00afe6ca , 将扩容操作
http://www.jianshu.com/p/7db1ac8395ee , 1.7 , 1.8 都有讲
在 1.8 版本以前,ConcurrentHashMap 采用分段锁的概念,使锁更加细化,但是 1.8 已经改变了这种思路,而是利用 CAS + Synchronized 来保证并发更新的安全,当然底层采用数组 + 链表 + 红黑树的存储结构。
数据结构
重要字段
/**
* races. Updated via CAS.
* 记录容器的容量大小,通过CAS更新
*/
private transient volatile long baseCount;
/**
* 这个sizeCtl是volatile的,那么他是线程可见的,一个思考:它是所有修改都在CAS中进行,但是sizeCtl为什么不设计成LongAdder(jdk8出现的)类型呢?
* 或者设计成AtomicLong(在高并发的情况下比LongAdder低效),这样就能减少自己操作CAS了。
*
* 来看下注释,当sizeCtl小于0说明有多个线程正则等待扩容结果,参考transfer函数
*
* sizeCtl等于0是默认值,大于0是扩容的阀值
*/
private transient volatile int sizeCtl;
/**
* 自旋锁 (锁定通过 CAS) 在调整大小和/或创建 CounterCells 时使用。 在CounterCell类更新value中会使用,功能类似显示锁和内置锁,性能更好
* 在Striped64类也有应用
*/
private transient volatile int cellsBusy;
还有最重要的节点类Node,注意val和next是volatile类型
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
volatile V val;
volatile Node<K,V> next;
Node(int hash, K key, V val, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
}
下面对重点的常量进行说明:
table:用来存放Node节点数据的,默认为null,默认大小为16的数组,每次扩容时大小总是2的幂次方
nextTable:扩容时新生成的数据,数组为table的两倍
Node:节点,保存key-value的数据结构
ForwardingNode:一个特殊的Node节点,hash值为-1,其中存储nextTable的引用。只有table发生扩容的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或则已经被移动
-
sizeCtl:控制标识符,用来控制table初始化和扩容操作的,在不同的地方有不同的用途,其值也不同,所代表的含义也不同
负数代表正在进行初始化或扩容操作
-1代表正在初始化
-N 表示有N-1个线程正在进行扩容操作
正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小
重点内部类
-
Node
Node 存储 key-value 键值对,所有插入ConcurrentHashMap的中数据都将会包装在Node中。
static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; volatile V val; //带有volatile,保证可见性 volatile Node<K,V> next; //下一个节点的指针 /** 不允许修改value的值 */ public final V setValue(V value) { throw new UnsupportedOperationException(); } /** 赋值get()方法 */ Node<K,V> find(int h, Object k) { Node<K,V> e = this; if (k != null) { do { K ek; if (e.hash == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) return e; } while ((e = e.next) != null); } return null; } }
在Node内部类中,其属性value、next都是带有volatile的。同时其对value的setter方法进行了特殊处理,不允许直接调用其setter方法来修改value的值。最后Node还提供了find方法来赋值map.get()。
-
TreeNode
在 1.8 的 ConcurrentHashMap 中,如果链表的数据过长是会转换为红黑树来处理。当它并不是直接转换,而是将这些链表的节点包装成TreeNode放在TreeBin对象中,然后由TreeBin完成红黑树的转换。所以TreeNode也必须是ConcurrentHashMap的一个核心类,其为树节点类。源码展示TreeNode继承Node,且提供了findTreeNode用来查找查找hash为h,key为k的节点。
-
TreeBin
该类并不负责key-value的键值对包装,它用于在链表转换为红黑树时包装TreeNode节点,也就是说ConcurrentHashMap红黑树存放是TreeBin,不是TreeNode。该类封装了一系列的方法,包括putTreeVal、lookRoot、UNlookRoot、remove、balanceInsetion、balanceDeletion。
-
ForwardingNode
这是一个真正的辅助类,该类仅仅只存活在ConcurrentHashMap扩容操作时。只是一个标志节点,并且指向nextTable,它提供find方法而已。该类也是集成Node节点,其hash为-1,key、value、next均为null。
构造函数
初始化: initTable()
ConcurrentHashMap的初始化主要由initTable()方法实现,在上面的构造函数中我们可以看到,其实ConcurrentHashMap在构造函数中并没有做什么事,仅仅只是设置了一些参数而已。其真正的初始化是发生在插入的时候,例如put、merge、compute、computeIfAbsent、computeIfPresent操作时。其方法定义如下:
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
//sizeCtl < 0 表示有其他线程在初始化,该线程必须挂起
if ((sc = sizeCtl) < 0)
Thread.yield();
// 如果该线程获取了初始化的权利,则用CAS将sizeCtl设置为-1,表示本线程正在初始化
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
// 进行初始化
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
// 下次扩容的大小
sc = n - (n >>> 2); ///相当于0.75*n 设置一个扩容的阈值
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
初始化方法initTable()的关键就在于sizeCtl,该值默认为0,如果在构造函数时有参数传入该值则为2的幂次方。该值如果 < 0,表示有其他线程正在初始化,则必须暂停该线程。如果线程获得了初始化的权限则先将sizeCtl设置为-1,防止有其他线程进入,最后将sizeCtl设置0.75 * n,表示扩容的阈值。
put
核心思想依然是根据hash值计算节点插入在table的位置,如果该位置为空,则直接插入,否则插入到链表或者树中。但是ConcurrentHashMap会涉及到多线程情况就会复杂很多。
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
//key、value均不能为null
if (key == null || value == null) throw new NullPointerException();
//计算hash值
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
// table为null,进行初始化工作
if (tab == null || (n = tab.length) == 0)
tab = initTable();
//如果i位置没有节点,则直接插入,不需要加锁
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// 有线程正在进行扩容操作,则先帮助扩容
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
//对该节点进行加锁处理(hash值相同的链表的头节点),对性能有点儿影响
synchronized (f) {
if (tabAt(tab, i) == f) {
//fh > 0 表示为链表,将该节点插入到链表尾部
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
//hash 和 key 都一样,替换value
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
//putIfAbsent()
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
//链表尾部 直接插入
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
//树节点,按照树的插入操作进行插入
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
// 如果链表长度已经达到临界值8 就需要把链表转换为树结构
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
//size + 1
addCount(1L, binCount);
return null;
}
按照上面的源码,我们可以确定put整个流程如下:
判空;ConcurrentHashMap的key、value都不允许为null
计算hash。利用方法计算hash值。
-
遍历table,进行节点插入操作,过程如下:
如果table为空,则表示ConcurrentHashMap还没有初始化,则进行初始化操作:initTable()
根据hash值获取节点的位置i,若该位置为空,则直接插入,这个过程是不需要加锁的。计算f位置:i=(n - 1) & hash
如果检测到fh = f.hash == -1,则f是ForwardingNode节点,表示有其他线程正在进行扩容操作,则帮助线程一起进行扩容操作
如果f.hash >= 0 表示是链表结构,则遍历链表,如果存在当前key节点则替换value,否则插入到链表尾部。如果f是TreeBin类型节点,则按照红黑树的方法更新或者增加节点
若链表长度 > TREEIFY_THRESHOLD(默认是8),则将链表转换为红黑树结构, 此时还需要进一步判断,并不是直接转换的(当数组大小已经超过64并且链表中的元素个数超过默认设定(8个)时,将链表转化为红黑树)
调用addCount方法,ConcurrentHashMap的size + 1,此方法还会判断是否需要扩容。
这里整个put操作已经完成。
get
get操作的整个逻辑非常清楚: - 计算hash值 - 判断table是否为空,如果为空,直接返回null - 根据hash值获取table中的Node节点(tabAt(tab, (n - 1) & h)),然后根据链表或者树形方式找到相对应的节点,返回其value值。
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
// 计算hash
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 搜索到的节点key与传入的key相同且不为null,直接返回这个节点
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// 树
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 链表,遍历
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
remove
size
ConcurrentHashMap的size()方法我们虽然用得不是很多,但是我们还是很有必要去了解的。ConcurrentHashMap的size()方法返回的是一个不精确的值,因为在进行统计的时候有其他线程正在进行插入和删除操作。当然为了这个不精确的值,ConcurrentHashMap也是操碎了心。
为了更好地统计size,ConcurrentHashMap提供了baseCount、counterCells两个辅助变量和一个CounterCell辅助内部类。
@sun.misc.Contended static final class CounterCell {
volatile long value;
CounterCell(long x) { value = x; }
}
//ConcurrentHashMap中元素个数,但返回的不一定是当前Map的真实元素个数。基于CAS无锁更新
private transient volatile long baseCount;
private transient volatile CounterCell[] counterCells;
size()方法定义如下:
public int size() {
long n = sumCount();
return ((n < 0L) ? 0 :
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int)n);
}
内部调用sunmCount():
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a;
long sum = baseCount;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
//遍历,所有counter求和
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
sumCount()就是迭代counterCells来统计sum的过程。我们知道put操作时,肯定会影响size(),我们就来看看CouncurrentHashMap是如何为了这个不和谐的size()操碎了心。
在put()方法最后会调用addCount()方法,该方法主要做两件事,一件更新baseCount的值,第二件检测是否进行扩容,我们只看更新baseCount部分:
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
// s = b + x,完成baseCount++操作;
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
// 多线程CAS发生失败时执行
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
// 检查是否进行扩容
}
x == 1,如果counterCells == null
,则U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)
,如果并发竞争比较大可能会导致改过程失败,如果失败则最终会调用 fullAddCount() 方法。
其实为了提高高并发的时候 baseCount 可见性的失败问题,又避免一直重试,JDK 8 引入了类 Striped64,其中 LongAdder 和 DoubleAdder 都是基于该类实现的,而 CounterCell 也是基于 Striped64 实现的。如果counterCells != null,且uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)
也失败了,同样会调用 fullAddCount() 方法,最后调用 sumCount() 计算 s。
其实在1.8中,它不推荐 size() 方法,而是推崇 mappingCount()
方法,该方法的定义和 size() 方法基本一致:
public long mappingCount() {
long n = sumCount();
return (n < 0L) ? 0L : n; // ignore transient negative values
}
扩容
什么时候扩容
当前容量超过阈值
当链表中元素个数超过默认设定(8个),当数组的大小还未超过64的时候,此时进行数组的扩容,如果超过则将链表转化成红黑树
其他线程在扩容时帮助扩容
扩容相关的属性
采用多线程扩容。整个扩容过程,通过CAS设置sizeCtl,transferIndex等变量协调多个线程进行并发扩容。
nextTable
扩容期间,将table数组中的元素 迁移到 nextTable。
sizeCtl属性
多线程之间,以volatile的方式读取sizeCtl属性,来判断ConcurrentHashMap当前所处的状态。通过cas设置sizeCtl属性,告知其他线程ConcurrentHashMap的状态变更。
不同状态,sizeCtl所代表的含义也有所不同。
未初始化:
sizeCtl=0:表示没有指定初始容量。
sizeCtl>0:表示初始容量。
初始化中:
sizeCtl=-1,标记作用,告知其他线程,正在初始化
正常状态:
sizeCtl=0.75n ,扩容阈值
扩容中:
sizeCtl < 0 : 表示有其他线程正在执行扩容
sizeCtl = (resizeStamp(n) << RESIZE_STAMP_SHIFT) + 2 :表示此时只有一个线程在执行扩容
transferIndex属性
private transient volatile int transferIndex;
/**
扩容线程每次最少要迁移16个hash桶
*/
private static final int MIN_TRANSFER_STRIDE = 16;
扩容索引,表示已经分配给扩容线程的table数组索引位置。主要用来协调多个线程,并发安全地获取迁移任务(hash桶)。
ForwardingNode节点
标记作用,表示其他线程正在扩容,并且此节点已经扩容完毕
关联了nextTable,扩容期间可以通过find方法,访问已经迁移到了nextTable中的数据
具体实现
- 在扩容之前,transferIndex 在数组的最右边 。此时有一个线程发现已经到达扩容阈值,准备开始扩容。
2 扩容线程,在迁移数据之前,首先要将transferIndex左移(以cas的方式修改 transferIndex=transferIndex-stride
(要迁移hash桶的个数)),获取迁移任务。每个扩容线程都会通过for循环+CAS的方式设置transferIndex,因此可以确保多线程扩容的并发安全。
换个角度,我们可以将待迁移的table数组,看成一个任务队列,transferIndex看成任务队列的头指针。而扩容线程,就是这个队列的消费者。扩容线程通过CAS设置transferIndex索引的过程,就是消费者从任务队列中获取任务的过程。为了性能考虑,我们当然不会每次只获取一个任务(hash桶),因此ConcurrentHashMap规定,每次至少要获取16个迁移任务(迁移16个hash桶,MIN_TRANSFER_STRIDE = 16)
cas设置transferIndex的源码如下:
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
//计算每次迁移的node个数
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // 确保每次迁移的node个数不少于16个
...
for (int i = 0, bound = 0;;) {
...
//cas无锁算法设置 transferIndex = transferIndex - stride
if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
...
...
}
...//省略迁移逻辑
}
}
过程分析
- 线程执行put操作,发现容量已经达到扩容阈值,需要进行扩容操作,此时transferindex=tab.length=32
- 扩容线程A 以cas的方式修改transferindex=31-16=16 ,然后按照降序迁移table[31]--table[16]这个区间的hash桶
- 迁移hash桶时,会将桶内的链表或者红黑树,按照一定算法,拆分成2份,将其插入nextTable[i]和nextTable[i+n](n是table数组的长度)。 迁移完毕的hash桶,会被设置成ForwardingNode节点,以此告知访问此桶的其他线程,此节点已经迁移完毕。
- 此时线程2访问到了ForwardingNode节点,如果线程2执行的put或remove等写操作,那么就会先帮其扩容。如果线程2执行的是get等读方法,则会调用ForwardingNode的find方法,去nextTable里面查找相关元素。
- 线程2加入扩容操作
-
如果准备加入扩容的线程,发现以下情况,放弃扩容,直接返回。
发现transferIndex=0,即所有node均已分配
发现扩容线程已经达到最大扩容线程数