DMA 技术是什么,在哪里用?看完绝对有收获

前文《I/O Zero Copy是什么?》介绍了 Zero Copy 的本质就是 IO 设备跟用户程序空间传输数据的过程中,减少数据拷贝次数,减少系统调用,实现 CPU 的零参与,彻底消除 CPU 在这方面的负载。实现 Zero Copy 用到的最主要技术是 DMA 数据传输技术和内存区域映射技术(虚拟内存)。

挖坑不断,填坑不止,通过《10 分钟看懂虚拟内存底层原理》我们学习了虚拟内存的底层原理。今天,我们来填一下 DMA 的大坑。从上层应用一路往下到底层硬件高速数据交换接口 DMA,越往下笔者愈感心有余而力不足,在这方面笔者也是个新人,边学边做一些笔记。

一、DMA 是什么?

DMA(Direct Memory Access:直接内存存取)是所有现代电脑的重要特色,它允许不同速度的硬件装置来沟通,而不需要依于 CPU 的大量中断负载,是一种可以大大减轻 CPU 工作量的数据转移方式。

CPU 有转移数据、计算、控制程序转移等很多功能,但其实转移数据(尤其是转移大量数据)是可以不需要 CPU 参与。比如希望外设A 的数据拷贝到外设 B,只要给两种外设提供一条数据通路,再加上一些控制转移的部件就可以完成数据的拷贝

正是基于上述的考虑,大佬们设计了 DMA ,解决数据转移过度消耗CPU资源的问题。

DMA 细节我们就不继续深究了,更多去了解 DMA 在 I/O 上的应用是怎样的,不过要记住 DMA 基本原理:

​DMA 是一种允许外围设备(硬件子系统)直接访问系统主内存的机制。也就是说,基于 DMA 访问方式,系统主内存于硬盘或网卡之间的数据传输可以绕开 CPU 的调度。

整个数据传输操作在一个 DMA 控制器(DMAC)的控制下进行的,CPU 除了在数据传输开始和结束时做一点处理外(开始和结束时候要做中断处理),在传输过程中 CPU 可以继续进行其他的工作。这样在大部分时间里,CPU 计算和 I/O 操作都处于并行操作,使整个计算机系统的效率大大提高。

二、Linux I/O 的 DMA 应用

Linux 提供了轮询、I/O 中断以及 DMA 传输这 3 种磁盘与主存之间的数据传输机制。

1)轮询方式是基于死循环对 I/O 端口进行不断检测。

2)I/O 中断方式是指当数据到达时,磁盘主动向 CPU 发起中断请求,由 CPU 自身负责数据的传输过程。

3)DMA 传输则在 I/O 中断的基础上引入了 DMA 磁盘控制器,由 DMA 磁盘控制器负责数据的传输,降低了 I/O 中断操作对 CPU 资源的大量消耗。

2.1 I/O 中断方式

在 DMA 技术出现之前,应用程序与磁盘之间的 I/O 操作都是通过 CPU 的中断完成的。每次用户进程读取磁盘数据时,都需要 CPU 中断,然后发起 I/O 请求等待数据读取和拷贝完成,每次的 I/O 中断都导致 CPU 的上下文切换:

image

1)用户进程向 CPU 发起 read 系统调用读取数据,由用户态切换为内核态,然后一直阻塞等待数据的返回。

2)CPU 在接收到指令以后对磁盘发起 I/O 请求,将磁盘数据先放入磁盘控制器缓冲区。

3)数据准备完成以后,磁盘向 CPU 发起 I/O 中断。

4)CPU 收到 I/O 中断以后将磁盘缓冲区中的数据拷贝到内核缓冲区,然后再从内核缓冲区拷贝到用户缓冲区。

5)用户进程由内核态切换回用户态,解除阻塞状态,然后等待 CPU 的下一个执行时间钟。

2.2 DMA传输方式

有了 DMA 磁盘控制器接管数据读写请求以后,CPU 从繁重的 I/O 操作中解脱,数据读取操作的流程如下:

image

1)用户进程向 CPU 发起 read 系统调用读取数据,由用户态切换为内核态,然后一直阻塞等待数据的返回。

2)CPU 在接收到指令以后对 DMA 磁盘控制器发起调度指令。

3)DMA 磁盘控制器对磁盘发起 I/O 请求,将磁盘数据先放入磁盘控制器缓冲区,CPU 全程不参与此过程。

4)数据读取完成后,DMA 磁盘控制器会接受到磁盘的通知,将数据从磁盘控制器缓冲区拷贝到内核缓冲区。

5)DMA 磁盘控制器向 CPU 发出数据读完的信号,由 CPU 负责将数据从内核缓冲区拷贝到用户缓冲区。

6)用户进程由内核态切换回用户态,解除阻塞状态,然后等待 CPU 的下一个执行时间钟。

小结

目前大多数的硬件设备,包括磁盘控制器、网卡、显卡以及声卡等都支持 DMA 技术。通过 DMA 和虚拟内存技术,我们实现了 Zero Copy 的目标,IO 设备跟用户程序空间传输数据的过程中,减少数据拷贝次数,减少系统调用,实现 CPU 的零参与,彻底消除 CPU 在这方面的负载。

挖坑序列文章

10 分钟看懂虚拟内存底层原理

I/O Zero Copy是什么?看完这篇你绝对会了

10分钟看懂 Java IO 底层原理

深入分析 Java 需要编码的场景

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342