PAML之codeml正选择问题 2020-10-10

原理参考:http://www.chenlianfu.com/?p=3084
解析参考:https://user.qzone.qq.com/58001704?source=grouplist&t=0.07615071655538241
Branch models主要用于对系统发育树中不同支系 ω值差异性进行界定,主要有三个模型:

(1)One-ratio model (model = 0):假设系统发育树中所有支系的 ω 值相等;

(2)Free-ratio model (model = 1 ):假设系统发育树中所有支系的 ω 值不相等;
注意此时的树未标定

outfile = branch.freeratio.mlc
     treefile = ../../tree/tree.raw

(3)Two-ratio model (model = 2):假设前景枝和背景枝的ω 值不同;

seqtype = 1  * 1:codons; 2:AAs; 3:codons-->AAs
model = 1              * models for codons:
                       * 0:one, 1:b, 2:2 or more dN/dS ratios for branches

                       * models for AAs or codon-translated AAs:
                       * 0:poisson, 1:proportional, 2:Empirical, 3:Empirical+F
                       * 6:FromCodon, 7:AAClasses, 8:REVaa_0, 9:REVaa(nr=189)
image.png

零假设模型(null model)—one ratio model的 ω 值:omega (dN/dS) = 0.1
代表零假设下,整个树上的平均 ω 值为0.1
备择假设模型(branch model)—two ratio model的 ω 值:ω (dN/dS) for branches: 0.0999 0.22497
代表备择假设下,背景支的平均 ω 值为 0.0999 ,前景支的平均 ω 值为 0.22497。
若p值<0.01,接受备择假设,代表前景支的 ω 值明显比背景支大,由于前景支和背景支的 ω 值都<1。所以前景支应该经历了负选择的放松。

参考:https://yanzhongsino.github.io/2023/10/10/evolution_selection_paml.codeml_branch.model/

branch-site.fix.ctl

model = 2
                   * models for codons:
                       * 0:one, 1:b, 2:2 or more dN/dS ratios for branches
                   * models for AAs or codon-translated AAs:
                       * 0:poisson, 1:proportional, 2:Empirical, 3:Empirical+F
                       * 6:FromCodon, 7:AAClasses, 8:REVaa_0, 9:REVaa(nr=189)
      NSsites = 2    * 0:one w;1:neutral;2:selection; 3:discrete;4:freqs;
                   * 5:gamma;6:2gamma;7:beta;8:beta&w;9:beta&gamma;
                   * 10:beta&gamma+1; 11:beta&normal>1; 12:0&2normal>1;
                   * 13:3normal>0

        icode = 4  * 0:universal code; 1:mammalian mt; 2-10:see below
        Mgene = 0
                   * codon: 0:rates, 1:separate; 2:diff pi, 3:diff kapa, 4:all diff
                   * AA: 0:rates, 1:separate

    fix_kappa = 0  * 1: kappa fixed, 0: kappa to be estimated
        kappa = 2  * initial or fixed kappa
    fix_omega = 1    * 1: omega or omega_1 fixed, 0: estimate
        omega = 1   * initial or fixed omega, for codons or codon-based AAs

    fix_alpha = 1  * 0: estimate gamma shape parameter; 1: fix it at alpha
        alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
       Malpha = 0  * different alphas for genes
        ncatG = 8  * # of categories in dG of NSsites models

        getSE = 0  * 0: don't want them, 1: want S.E.s of estimates
 RateAncestor = 1  * (0,1,2): rates (alpha>0) or ancestral states (1 or 2)

   Small_Diff = .5e-6
    cleandata = 1  * remove sites with ambiguity data (1:yes, 0:no)?

branch-site.nofix.ctl

outfile = branch-site.DESI_ARAQ.nofix.mlc
     treefile = ../../tree/tree.DESI_ARAQ
    model = 2
                   * models for codons:
                       * 0:one, 1:b, 2:2 or more dN/dS ratios for branches
                   * models for AAs or codon-translated AAs:
                       * 0:poisson, 1:proportional, 2:Empirical, 3:Empirical+F
                       * 6:FromCodon, 7:AAClasses, 8:REVaa_0, 9:REVaa(nr=189)
      NSsites = 2    * 0:one w;1:neutral;2:selection; 3:discrete;4:freqs;
                   * 5:gamma;6:2gamma;7:beta;8:beta&w;9:beta&gamma;
                   * 10:beta&gamma+1; 11:beta&normal>1; 12:0&2normal>1;
                   * 13:3normal>0

        icode = 4  * 0:universal code; 1:mammalian mt; 2-10:see below
        Mgene = 0
                   * codon: 0:rates, 1:separate; 2:diff pi, 3:diff kapa, 4:all diff
                   * AA: 0:rates, 1:separate

    fix_kappa = 0  * 1: kappa fixed, 0: kappa to be estimated
        kappa = 2  * initial or fixed kappa
    fix_omega = 0     * 1: omega or omega_1 fixed, 0: estimate
        omega = 1.5    * initial or fixed omega, for codons or codon-based AAs

    fix_alpha = 1  * 0: estimate gamma shape parameter; 1: fix it at alpha
        alpha = 0. * initial or fixed alpha, 0:infinity (constant rate)
       Malpha = 0  * different alphas for genes
        ncatG = 8  * # of categories in dG of NSsites models

        getSE = 0  * 0: don't want them, 1: want S.E.s of estimates
 RateAncestor = 1  * (0,1,2): rates (alpha>0) or ancestral states (1 or 2)

   Small_Diff = .5e-6
    cleandata = 1  * remove sites with ambiguity data (1:yes, 0:no)?
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353