浅谈内容类APP数据统计

最近在做商城导购类app,在首版基础功能实现后,用户基本上可以通过app完成购买流程的闭环。

接下来软件想要再提升一个层次,就需要提升用户浏览的体验和内容推荐的效率。既然要“提升”,势必要做许多功能,功能做完后,是否真的“提升”了,只有数据能告诉我们真相。于是乎,花了半晌对数据统计做了个总结。

抛出了几个问题:1、要统计哪些数据?2、该怎么统计?


要统计哪些数据?

想要回答这个问题,就需要想一下数据在哪些工作环节会起到作用。在这里,我将数据的作用分为几方面:

1、运营报表

既然是导购类app,自然少不了各种导购商品的推荐,每个导购位置是对用户的浏览购买起着积极的作用,推荐的东西是否合乎用户的胃口,需要数据去佐证;又比如小明和小红都是运营人员,但小明的月工资比小红多一千,

小红不服去找主管:“为啥做着一样的事儿,我还天天加班,但小红拿的比我多呢?”,

主管淡定地打开后台:“小红上个月运营商品的销售额比你多2万,服了么?”。

对于运营数据来说,主要是要表达清楚一件事:安排在软件内部和外部的那些推荐位,各自产生了多少收入。即“推荐位”和“收入”之间的关系。

2、行为数据

几乎所有的app都要统计行为数据,这个数据是主要提供给app的设计人员看的。在导购类app中,行为数据可以这样举个栗子:

产品汪:“我们这版优化了搜索界面的体验”,

老板:“优化后有效果吗?”,

产品汪:“有啊!”,

老板:“怎么看效果?”,

产品汪:“用户在搜索页面产生购买的次数 / 用户进入搜索页面的次数 的值变大了!”,

老板:“说人话!”,

产品汪:“就是用户搜索后购买的概率变大了!”,

老板:“干得漂亮,年终奖给你多发一张彩票”。

对于行为数据来说,要表现的是设计的功能、布局、流程是否能提升了用户新增、留存、点击率、购买量,最终实质还是“功能设计”与“收入”之间的关系。

3、推荐数据支持

这是内容类app特有的一种数据统计需求。在旧社会,人们通过报纸来获取新闻信息,由于时代的限制每天发生的新闻数量、不同媒体竞争的压力远不如现在,哪个年代每个人看着同样的报纸、同样的版面的同样的新闻,人们不觉得有什么不好,主要也没有其他的什么选择,只能看报纸。

在信息化如此发达的时代,传统的那一套显然不够用了,大家每天都很忙的!那么多新闻看都看不完,就需要我们通过“智能处理”,帮助用户去筛选新闻,这个用户到底是关系楼下猪肉是否涨价了,还是关心NASA发射的航天飞机是否爆炸了?需要提供数据,再通过算法智能分析,去了解每个用户喜欢什么。

推荐是把内容(例如商品)推荐给人,所以推荐数据是要表达“人”和“商品”之间的关系。


该怎么统计数据?

不同作用的数据统计的方式有所不同,所以针对具体需求具体分析。

1、运营报表的统计思路

对于运营数据来说,app内部有很多推荐位和推荐方式,甚至可以将内容分享到微信等社交网络,同样会产生点击等数据。也就是说,用户可以从很多我们无法预知的地方点击、浏览、购买。

所以,我们无法依赖“推荐位”本身给我们提供统计的帮助。

虽然推荐位有不确定性,但既然用户能浏览到内容、看到商品,那商品本身一定是确定存在的,所以我们可以在商品信息中添加额外的信息来表示这条商品信息“是从哪来的”

运营在创建推广的位置后,需要给这个位置配置推广的商品内容,这些商品是指上是按照服务端提供的商品查询、搜索接口查到的,只需在向服务端提交查询请求时,带上推荐位的标识和运营人员身份的标识等字段,服务端就可以把推荐位和运营身份的信息放入到商品信息中,返回给APP或推广位。之后用户点击、购买了该商品,就能知道是什么推荐位购买的了,也可以知道哪个运营人员安排了这个推荐位。

大繁至简,以不变应万变,通过这个思路,哪怕用户将这些内容分享到社交平台,同样可以统计到点击和购买来自于哪里。

2、行为数据的统计思路

上面说到,行为数据主要是反映“功能设计”和“收入”之间的关系,然后影响收入的因素有很多方面,例如用户在购买的过程中操作是否流畅、给用户推荐的东西用户是否喜欢、设计的某项功能是否带动了用户间的传播进而提升了新增,这些都会影响收入。

这些的思路和方式都略有不同,不过中心思想是清晰的:根据每项功能设定特有的统计方式,并且数据是简单可靠的,目的是明确的,不贪大求全,追求一项统计反应很多功能的情况。

在这里,统计哪些行为数据要比怎么统计它 重要一些。

3、推荐数据支持的统计

推荐主要是说人和商品内容之间的关系,这里不关心用户是从哪找到这个商品的,是搜索到的还是好友介绍的,都没关系,只关心这个用户“有多喜欢”这个商品,“多喜欢”在程序中是用数值来表达的,例如极度喜欢用100来表示,完全不care用0来表示,0-100之间的数字就是喜欢的程度。作为统计来说,就是要给推荐系统搜集这样的数据标本,以供系统分析。点击查看,喜欢的数值是20,收藏的数值50,购买是100。把这些数据交给推荐系统,至于商品和商品之间的关系、人和人之间的关系的计算,那是推荐系统的事儿,统计部分不需要理会这些。

由于这是第一次做推荐数据支持,目前的想法可能有些简单,如果后面有新的体会再补上。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容