VS2015+Intel MKL+Eigen的安装与混合编程

  Intel MKL是一个非常高性能的矩阵库,Matlab的矩阵计算核心就是链接了这个库。但可惜国内学习资源不多,而且语法跟Matlab、Numpy等相差甚远,因此比较少用。但是我们可以用MKL来加速语法风格跟Matlab、Numpy很像的Eigen库,使得用了Eigen库的C++矩阵计算程序在一定程度上赶超Matlab的矩阵运算性能。//使用Eigen编码,Intel MKL优化

Eigen库是一个高层次的C++矩阵库,支持包括固定大小、任意大小的所有矩阵操作,甚至是稀疏矩阵;支持所有标准的数值类型,并且可以扩展为自定义的数值类型;支持多种矩阵分解及其几何特征的求解;它不支持的模块生态系统提供了许多专门的功能,如非线性优化,矩阵功能,多项式解算器,快速傅立叶变换等。

  多的不说了,下面开始进行Intel MKL的安装:

一.Intel MKL安装及VS2015下的属性配置:(谨记:要先安装VS再安装MKL!)

我安装的是2018版本。于是我下载parallel_studio_xe_2018。推荐从官网下载,安装文件在3.4G左右。

在官网用邮箱注册可以获得试用的下载码以及lic激活文件(我们可以认为它是免费的了)。

打开该文件,居然是要解压才能继续安装……

点击setup.exe进行安装……

  我选择的路径是:D:\Program Files\IntelSWTools

  选择Integration Target为VS2015:

  然后根据步骤安装即可。

  安装后是这个样子的:此时环境变量已经自动设置好,就差VS2015里面的相关配置了。

  下面开始配置VS2015使其能够调用Intel MKL库:

新建一个C++控制台项目,打开该项目的“属性管理器”:

这里Debug和Release的属性配置方法都是一样的,不同的是32位和64位的配置。

在Release|Win32下新建一个MKL属性:

双击刚刚新建的属性配置文件,依次配置:VC++目录->可执行目录;VC++目录->包含目录;VC++目录->库目录;链接器->附加依赖项。具体的配置内容如图所示:

这样就OK了。下面配置Release|x64的属性:

同理创建好属性配置文件:

   双击刚刚新建的属性配置文件,依次配置:VC++目录->可执行目录;VC++目录->包含目录;VC++目录->库目录;链接器->附加依赖项。注意:其中的“VC++目录->可执行目录;VC++目录->包含目录”两项配置内容跟前面的win32配置是一样的。后面的两项“VC++目录->库目录;链接器->附加依赖项”配置就有点不同了!这两项的详细配置内容如下图:

OK,完成上述步骤之后就可以在VS2015的该项目上调用Intel MKL库了。

实例代码不急着看……等讲完Eigen的安装与配置再放测试代码。

二. Eigen3的安装及VS2015中的属性配置:

   1. 安装Eigen3相对简单很多,只需在官网上下载一个压缩包,然后解压到某个文件夹上即可:具体如下:

(当然也可以在github中下载到)

2. 解压到喜欢的文件夹下:

3. VS2015中的属性配置:此时无论是Debug模式还是Release模式,无论是Win32还是x64,都是一样的配置方法(因此只需建立一个配置文件,然后在属性管理器的其他模式下添加该配置文件即可)。

        一步到位:C/C++->常规->附加包含目录

        下面就可以来测试Eigen与Intel MKL结合的运行效果了:

代码如下:

//使用Eigen编码,Intel MKL优化//加这两行,用于调用Intel MKL库进行优化

#define EIGEN_USE_MKL_ALL

#define EIGEN_VECTORIZE_SSE4_2

#include   <iostream>

#include   <windows.h>

#include   <stdlib.h>

#include   <Eigen/Core>

#include   <Eigen/Dense>

#include   <time.h>

using namespace std;

using namespace Eigen;

int main(int argc, char *argv[])

{

mkl_set_dynamic(4); // Intel MKL库里面的一个函数,用来指定使用4个CPU进行计算

double start = clock();

MatrixXd a = MatrixXd::Random(300, 300);  // 随机初始化矩阵

MatrixXd b = MatrixXd::Random(300, 300);

// 循环5000次以测试性能与Matlab对比

for (int i = 0; i < 5000; i++) {

MatrixXd c = a * b;    // 矩阵相乘

c = a.inverse(); // 求逆矩阵

c = a + b;  // 矩阵相加

c = a.cwiseProduct(b); // 矩阵a和b按元素相乘(对应于Matlab的 .* )

}

double endd = clock();

double thisTime = (double)(endd - start) / CLOCKS_PER_SEC; // 输出运行时间

cout << thisTime << "秒" << endl;

return 0;

}

运行效果:

为了对比,用Matlab写一个相同功能的进行效率对比:

看到这个结果不要对C++的Eigen结合Intel MKL的方法感到失望。虽然Eigen本身也是个高性能的矩阵库,但也不如Intel MKL针对英特尔的CPU的特殊优化。本例中,因为毕竟是结合Intel MKL优化,而不是纯粹地用MKL。而Matlab是高度优化地用了Intel MKL进行矩阵计算的。因此这个C++的Eigen结合Intel MKL在矩阵计算上只能匹的得上Matlab,但是至于赶超,还需要纯粹地用Intel MKL或者再进行深度优化。

但是,C++在循环上效率是远超Matlab的,因此,假如上面的程序执行10000次,那么效率如下:

        可见当大量进行循环时,用C++的Eigen结合Intel MKL方法,效率会比Matlab好,而且,开发效率也不比Matlab低。更不用说python了,python的numpy+mkl也难以跟上这个效率。关键是,Eigen是开源免费的,而Intel MKL我们可以用邮箱申请到非商业版,也等于是免费的了。相比要收费的Matlab而言,是越来越受到学生和开发者们的青睐了。

有人可能会认为搞矩阵搞机器学习人工智能,就应该用matlab、就应该用python,而不应该用折腾人的C++。这点我不否定,但其实python可以轻松地与C++结合。tensorflow也是如此,它的内核是用C++的,只是给python提供了接口以便用Python进行快速构建。顺便一提,tensorflow的矩阵库也是用eigen的,因此可以用python进行快速开发,同时也保证了极高的效率。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,099评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,828评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,540评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,848评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,971评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,132评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,193评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,934评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,376评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,687评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,846评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,537评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,175评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,887评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,134评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,674评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,741评论 2 351

推荐阅读更多精彩内容