语音识别 2-Listen,Attend,and Spell(LAS)

LAS是Listen(Encoder),Attend,和Spell(Decoder)的简称

第一个步骤Listen(Encoder)

listen的作用是输入一段语音信号,输出一段向量,去掉语音中的杂序,只保留和语音有关的部分。
Listen

上图中acoustic features表示的是每一帧的声音信号。

listen进行encoder

  • RNN


    双向RNN进行encoder
  • CNN

    将fliter沿着时间的方向扫过每一个acoustic features ,每一个fliter会吃一个范围的acoustic features进去得到一个数值,不同的fliter会产生不同的数值,最后生成的是一个向量。
    CNN进行encoder
  • self-attention layers


    self_sttention进行encoder

listen的时候进行down sampling(降采样)

一段声音信号表示成acoustic features的时候太长,1秒钟的声音信号有100个向量,且相邻的向量之间包含的信息量也相差不大,所以在做语音识别的过程中,为了保持训练过程更有效率,就产生了down sampling.

  • 减少RNN的运算量
    down-sampling

    pyramid RNN
    Pooling over time
    上图中每一层都是RNN。左边是将相邻两个加起来送到下一层,右边是在相邻两个之间选择一个送到下一层。
  • 减少CNN和self-attention的运算量


    down-sampling

    在做attention时,每一个时间点的feature都会去attend 整个输入序列中所有的feature,在做翻译时可能表现很好,但在语音识别中,一秒钟就有100个acoustic features,太长了,无法很好的做attention。因此truncated self-attention限制attention的长度,只看未来和过去一段时间的输入序列。

第二个步骤Attention

两种常用的attention方式

  • dot-product attention


    dot-product attention
  • additive attention


    additive attention

attntion 的过程

attention 过程
上图中z_0和encode的每一个h进行一个计算,z_0h^1计算得到\alpha_0^1 , 和h^2计算得到\alpha_0^2 , ....。Encoder会输入一串acoustic features ,每一个acoustic features都对应一个输出,每一个输出都会得到一个\alpha,然后将得到的\alpha经过一个softmax层,得到\hat{\alpha},最终z_0的attention的值c^0为最后概率和输出的乘积形式。c^0作为下一个decode的输入,在文献中c^0一般写成context vector。

第三个步骤Spell

  • 初始的z_0做attention后spell

    spell

    上图中输出distribute over all tokens就是对词典中每一个词汇生成一个概率,所有概率之和为1。具体输出什么词汇就看那个概率最大,概率最大的即为当前的输出。

  • 再拿hidden state 中的z_1继续去做attention

    z1进行attention

    算出新的\alpha的值,经过softmax后\hat{\alpha}值,最后用\hat{\alpha}乘以h得到c^1作为下一次decode的输入。
    attntion的结果作为decoder的输入

    上一次spell的输出(此处是c),上一个hidden state z^1,和decode的输入c^1共同决定了hidden state 的值z^2,然后将z^2做一个attention,以此类推,...其示意图如下:
    整个LAS过程

训练

teacher forcing

c0进行decoder

在训练过程中可能会存在一个问题,就是之后的输出和之前的输出有关,所以如果前面的输入错了的话,后面无论怎么训练都无法达到好的训练效果,因此在训练时加一个teacher forcing ,直接将上一时刻正确的结果作为下一次的输入,避免前面一错全错。


teacher forcing
18.png
19.png

attention的一些知识

  • attention的不同用法


    attention的两种方式

    左边和右边的差异就是,attention得到的结果是在下一个time_step使用还是在这一个time_step使用。到底哪一个好也不好判断,但第一次用此方法做论文的是两种方法都使用了。attention得到的结果在当前步和下一步都使用一次。
    实际处理的方式
  • location-aware attention
    在attention的过程中,按照我们的想法,应该是从左到右,注意力慢慢转移,但是在实际运算中,注意力可能是随便乱跳的,这就和我们的初衷相违背。
    attention可能出现的问题

    现在在attention进行计算的时候,z^0在和h^2进行attention计算时,也要考虑与h^2相邻的区域的取值。
    23.png

补充

1.Beam Search

原始的输出是寻找当前步骤的最大值(类似于贪心算法),很容易陷入局部最优,刚开始很好,但可能最后的一条路径并不是概率最大的。假设每次只有两种情况A,B供选择。
贪心算法

beam search不是只保留当前的最大值,而是保留当前最优的k个值,k的具体取值自己调,k越大,找出最大路径的可能性越大,但是所需的算力也越大,k越小,所需的算力小,但是找出最大路径的可能性也越小,当k=1时,beam search 退化为贪心算法。
k=2的beam search

LAS的局限性

  • 1.LAS包含attention,所以需要encoder将所有的语音听完,这就导致无法听一部分就输出一部分,不能online。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354