R语言data.frame与tibble的异同点

Tibbles

Tibbles are a modern take on data frames. They keep the features that have stood the test of time, and drop the features that used to be convenient but are now frustrating (i.e. converting character vectors to factors).

Creating

tibble() is a nice way to create data frames. It encapsulates best practices for data frames:

  • It never changes an input’s type (i.e., no more stringsAsFactors = FALSE!).

    tibble(x = letters)
    
    #> # A tibble: 26 x 1
    #>    x    
    #>    <chr>
    #>  1 a    
    #>  2 b    
    #>  3 c    
    #>  4 d    
    #>  5 e    
    #>  6 f    
    #>  7 g    
    #>  8 h    
    #>  9 i    
    #> 10 j    
    #> # … with 16 more rows
    
    

    This makes it easier to use with list-columns:

    tibble(x = 1:3, y = list(1:5, 1:10, 1:20))
    
    #> # A tibble: 3 x 2
    #>       x y         
    #>   <int> <list>    
    #> 1     1 <int [5]> 
    #> 2     2 <int [10]>
    #> 3     3 <int [20]>
    
    

    List-columns are most commonly created by do(), but they can be useful to create by hand.

  • It never adjusts the names of variables:

    names(data.frame(`crazy name` = 1))
    
    #> [1] "crazy.name"
    
    
    names(tibble(`crazy name` = 1))
    
    #> [1] "crazy name"
    
    
  • It evaluates its arguments lazily and sequentially:

    tibble(x = 1:5, y = x ^ 2)
    
    #> # A tibble: 5 x 2
    #>       x     y
    #>   <int> <dbl>
    #> 1     1     1
    #> 2     2     4
    #> 3     3     9
    #> 4     4    16
    #> 5     5    25
    
    
  • It never uses row.names(). The whole point of tidy data is to store variables in a consistent way. So it never stores a variable as special attribute.

  • It only recycles vectors of length 1. This is because recycling vectors of greater lengths is a frequent source of bugs.

Coercion

To complement tibble(), tibble provides as_tibble() to coerce objects into tibbles. Generally, as_tibble() methods are much simpler than as.data.frame() methods, and in fact, it’s precisely what as.data.frame() does, but it’s similar to do.call(cbind, lapply(x, data.frame)) - i.e. it coerces each component to a data frame and then cbinds() them all together.

as_tibble() has been written with an eye for performance:

l <- replicate(26, sample(100), simplify = FALSE)
names(l) <- letters

timing <- bench::mark(
  as_tibble(l),
  as.data.frame(l),
  check = FALSE
)

timing
#> # A tibble: 2 x 14
#>   expression min         mean         median      max         `itr/sec`
#>   <chr>      <bench_tm>  <bench_tm>   <bench_tm>  <bench_tm>      <dbl>
#> 1 as_tibble… 0.000287696 0.0006251376 0.000327178 0.004508219     1600.
#> 2 as.data.f… 0.000791522 0.0016640039 0.001098172 0.007652914      601.
#> # … with 8 more variables: mem_alloc <bnch_byt>, n_gc <dbl>, n_itr <int>,
#> #   total_time <bench_tm>, result <list>, memory <list>, time <list>, gc <list>

The speed of as.data.frame() is not usually a bottleneck when used interactively, but can be a problem when combining thousands of messy inputs into one tidy data frame.

Tibbles vs data frames

There are three key differences between tibbles and data frames: printing, subsetting, and recycling rules.

Printing

When you print a tibble, it only shows the first ten rows and all the columns that fit on one screen. It also prints an abbreviated description of the column type, and uses font styles and color for highlighting:

tibble(x = -5:1000)
#> # A tibble: 1,006 x 1
#>        x
#>    <int>
#>  1    -5
#>  2    -4
#>  3    -3
#>  4    -2
#>  5    -1
#>  6     0
#>  7     1
#>  8     2
#>  9     3
#> 10     4
#> # … with 996 more rows

You can control the default appearance with options:

  • options(tibble.print_max = n, tibble.print_min = m): if there are more than n rows, print only the first m rows. Use options(tibble.print_max = Inf) to always show all rows.

  • options(tibble.width = Inf) will always print all columns, regardless of the width of the screen.

Subsetting

Tibbles are quite strict about subsetting. [ always returns another tibble. Contrast this with a data frame: sometimes [ returns a data frame and sometimes it just returns a vector:

df1 <- data.frame(x = 1:3, y = 3:1)
class(df1[, 1:2])
#> [1] "data.frame"

class(df1[, 1])
#> [1] "integer"


df2 <- tibble(x = 1:3, y = 3:1)
class(df2[, 1:2])
#> [1] "tbl_df"     "tbl"        "data.frame"

class(df2[, 1])
#> [1] "tbl_df"     "tbl"        "data.frame"

To extract a single column use [[ or $:

class(df2[[1]])
#> [1] "integer"

class(df2$x)
#> [1] "integer"

Tibbles are also stricter with $. Tibbles never do partial matching, and will throw a warning and return NULL if the column does not exist:

df <- data.frame(abc = 1)
df$a
#> [1] 1


df2 <- tibble(abc = 1)
df2$a
#> Warning: Unknown or uninitialised column: `a`.

#> NULL

As of version 1.4.1, tibbles no longer ignore the drop argument:

data.frame(a = 1:3)[, "a", drop = TRUE]
#> [1] 1 2 3

tibble(a = 1:3)[, "a", drop = TRUE]
#> [1] 1 2 3

Recycling

When constructing a tibble, only values of length 1 are recycled. The first column with length different to one determines the number of rows in the tibble, conflicts lead to an error. This also extends to tibbles with zero rows, which is sometimes important for programming:

tibble(a = 1, b = 1:3)
#> # A tibble: 3 x 2
#>       a     b
#>   <dbl> <int>
#> 1     1     1
#> 2     1     2
#> 3     1     3

tibble(a = 1:3, b = 1)
#> # A tibble: 3 x 2
#>       a     b
#>   <int> <dbl>
#> 1     1     1
#> 2     2     1
#> 3     3     1

tibble(a = 1:3, c = 1:2)
#> Error: Tibble columns must have compatible sizes.
#> * Size 3: Existing data.
#> * Size 2: Column `c`.
#> ℹ Only values of size one are recycled.

tibble(a = 1, b = integer())
#> # A tibble: 0 x 2
#> # … with 2 variables: a <dbl>, b <int>

tibble(a = integer(), b = 1)
#> # A tibble: 0 x 2
#> # … with 2 variables: a <int>, b <dbl>

<iframe id="blockbyte-bs-sidebar" class="notranslate" data-pos="right" style="opacity: 0; pointer-events: none; position: fixed; top: 0px; left: auto; width: 350px; max-width: none; height: 0px; z-index: 2147483646; border: none; transform: translate3d(350px, 0px, 0px); transition: width 0s ease 0.3s, height 0s ease 0.3s, opacity 0.3s ease 0s, transform 0.3s ease 0s; background-color: rgba(38, 38, 38, 0.6) !important; display: block !important; right: 0px; color: rgb(176, 175, 173); font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 14px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial;"></iframe>

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356