go语言学习日记(7)

二叉树的层序遍历

层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。

而go语言中的库函数中没有定义好的栈,只有双向链表。由由于go语言的切片是值传递,并不是引用传递,所以我们可以通过闭包来解决这个问题。

闭包

所谓闭包就是一个函数“捕获”了和它在同一作用域的其它常量和变量。这就意味着当闭包被调用的时候,不管在程序什么地方调用,闭包能够使用这些常量或者变量。它不关心这些捕获了的变量和常量是否已经超出了作用域,所以只有闭包还在使用它,这些变量就还会存在。

在 Go 语言里,所有的匿名函数(Go 语言规范中称之为函数字面量)都是闭包。匿名函数是指不需要定义函数名的一种函数实现方式。

// squares 返回一个匿名函数,func() int
// 该匿名函数每次被调用时都会返回下一个数的平方。
func squares() func() int {
    var x int
    return func() int {//匿名函数
        x++ //捕获外部变量,闭包还在使用所以x的作用域并没有被释放
        return x * x  
    }
}
func main() {
    f := squares() //squares() 函数返回的是一个闭包,但是在这个语句中,你只给闭包赋值,并没有执行这个闭包函数。
    fmt.Println(f()) // "1",执行闭包
    fmt.Println(f()) // "4"
    fmt.Println(f()) // "9"
    fmt.Println(f()) // "16"
}

层序遍历

/**
102. 二叉树的递归遍历
 */
func levelOrder(root *TreeNode) [][]int {
    arr := [][]int{}

    depth := 0

    var order func(root *TreeNode, depth int)

    order = func(root *TreeNode, depth int) {
        if root == nil {
            return
        }
        if len(arr) == depth {
            arr = append(arr, []int{})
        }
        arr[depth] = append(arr[depth], root.Val)

        order(root.Left, depth+1)
        order(root.Right, depth+1)
    }

    order(root, depth)

    return arr
}
/**
102. 二叉树的层序遍历:使用切片模拟队列,易理解
 */
func levelOrder(root *TreeNode) (res [][]int) {
    if root == nil {
        return
    }

    curLevel := []*TreeNode{root}  // 存放当前层节点
    for len(curLevel) > 0 {
        nextLevel := []*TreeNode{}  // 准备通过当前层生成下一层
        vals := []int{}

        for _, node := range curLevel {
            vals = append(vals, node.Val) // 收集当前层的值
            // 收集下一层的节点
            if node.Left != nil {
                nextLevel = append(nextLevel, node.Left)
            }
            if node.Right != nil {
                nextLevel = append(nextLevel, node.Right)
            }
        }
        res = append(res, vals)
        curLevel = nextLevel // 将下一层变成当前层
    }

    return
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容