参考官网
http://spark.apache.org/docs/2.1.0/streaming-kafka-0-8-integration.html
-
之前先确保以下操作:
1、先启动ZK:./zkServer.sh start
2、启动Kafka:./kafka-server-start.sh -daemon $KAFKA_HOME/config/server.properties
3、创建topic:
./kafka-topics.sh --create --zookeeper hadoop:2181 --replication-factor 1 --partitions 1 --topic kafka_streaming_topic
./kafka-topics.sh --list --zookeeper hadoop:2181
4、通过控制台测试是否能正常生产与消费
./kafka-console-producer.sh --broker-list hadoop:9092 --topic kafka_streaming_topic
./kafka-console-consumer.sh --zookeeper hadoop:2181 --topic kafka_streaming_topic
Approach 1: Receiver-based Approach
-
Receiver方式的本地环境联调
1、KafkaUtils.createStream
Create an input stream that pulls messages from Kafka Brokers.
import org.apache.spark.streaming.kafka._
val kafkaStream = KafkaUtils.createStream(streamingContext,
[ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume])
2、引入数组,含四个数->val Array(zkQuorum,group,topics,numThreads) = args
3、判断是否传入四个参数->构建topicMap:
val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
4、topicMap
带入KafkaUtils
参数
5、业务代码:
messages.map(_._2).flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).print()
6、到IDEA的edit configuration
编辑以下内容:
hadoop:2181 test kafka_streaming_topic 1
注意:
test:group名
1:线程数
setMaster("local[2]") 一定要大于2
7、run
下代码,在kafka 生产者窗口
手动输入几个单词,在kafka consumer窗口
即时看到单词的产生,在本地代码的console窗口
看到单词计数
-
Receiver方式的生产环境联调
1、在项目根目录下执行编译
mvn clean package -DskipTests
2、上传到服务器hadoop的lib
目录下,执行:
spark-submit \
--class com.feiyue.bigdata.sparkstreaming.KafkaReceiverWordCount \
--master local[2] \
--name KafkaReceiverWordCount \
--packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.2.0 \
/home/hadoop/lib/spark-1.0-SNAPSHOT.jar hadoop:2181 test kafka_streaming_topic 1
3、运行后看4040端口Spark Streaming的UI
界面
可以知道UI页面中,
Receiver是一直都在运作的,
而Direct方式没有此Jobs
Approach 2: Direct Approach (No Receivers)
Note that this feature was introduced in Spark 1.3 for the Scala and Java API, in Spark 1.4 for the Python API.
特点:
1、简化了并行度,不需要多个Input Stream
,只需要一个DStream
2、加强了性能,真正做到了0数据丢失,而Receiver方式
需要写到WAL
才可以(即副本存储),Direct方式没有Receiver
3、只执行一次
缺点:
1、基于ZooKeeper的Kafka
监控工具,无法展示出来,所以需要周期性地访问offset
才能更新到ZooKeeper
去
-
怎么做
基于Receiver
方式的代码,将createStream改为createDirectStream
,其余业务代码都不用改动。
//kafkaParams: Map[String, String],
//topics: Set[String]
val Array(brokers, topics) = args
//val sparkConf = new SparkConf().setAppName("KafkaDirectWordCount").setMaster("local[2]")
val sparkConf = new SparkConf()
val ssc = new StreamingContext(sparkConf, Seconds(5))
val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)
val topicsSet = topics.split(",").toSet
val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)
messages.map(_._2).flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _).print()
ssc.start()
ssc.awaitTermination()
-
Direct生产环境联调
基于Receiver
方式,参数只需要传brokers与topics
,注意查看源码与泛型看返回类型并构造出来
spark-submit \
--class com.feiyue.bigdata.sparkstreaming.KafkaDirectWordCount \
--master local[2] \
--name KafkaDirectWordCount \
--packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.2.0 \
/home/hadoop/lib/spark-1.0-SNAPSHOT.jar hadoop:9092 kafka_streaming_topic
3、运行后看4040端口Spark Streaming的UI
界面
可以知道UI页面中,Direct方式没有此Jobs