今天楼主在LeetCode上面刷到了一道动态规划的题,感觉有必要的记录下来。
题意
We are playing the Guess Game. The game is as follows:
I pick a number from 1 to n. You have to guess which number I picked.
Every time you guess wrong, I'll tell you whether the number I picked is higher or lower.
However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when
you guess the number I picked.
样例
n = 10, I pick 8.
First round: You guess 5, I tell you that it's higher. You pay $5.
Second round: You guess 7, I tell you that it's higher. You pay $7.
Third round: You guess 9, I tell you that it's lower. You pay $9.
Game over. 8 is the number I picked.
You end up paying $5 + $7 + $9 = $21.
补充
Given a particular n ≥ 1, find out how much money you need to have to guarantee a win.
1. 解题思路
初次看到这道题时,我一脸懵逼,后面实在是想不通这道题的意思,参考了大佬的代码并且加以理解。
我们先来理解一下这道题的意思。题干说给一个数字n,求得最小的支出。我们可以从博弈论的方向来看待这道题,博弈的对方肯定会想法设法让我们最终的结果最大,为什么这么说呢?如果对方不给我们创造阻碍的,那最小值岂不是永远是0(我们选择啥,对方就设置啥)。所以得出如下结论:
当我们选择m,如果m左边或者右边还有未选择数字,那么博弈方设置的数字肯定是左边和右边的最大结果。抽象成代码的话,假设dp[n + 1][n + 1]数组,其中dp[i][j]表示从i ~ j的最小值,那么我们可以得出动态规划方程:dp[i][j] = Math.min(dp[i][j], select + Math.max(dp[i][select - 1], dp[select + 1][j]))
,其中select的取值范围是:[i, j]。
如上分析,我们得出从两种方法来解决这个问题:动态规划和分治法。
2. 动态规划
public int getMoneyAmount(int n) {
int dp[][] = new int[n + 1][n + 1];
for (int right = 1; right <= n; right++) {
for (int left = right - 1; left >= 1; left--) {
dp[left][right] = Integer.MAX_VALUE;
for (int select = right; select >= left; select--) {
if (select == left) {
dp[left][right] = Math.min(dp[left][right], select + dp[select + 1][right]);
} else if (select == right) {
dp[left][right] = Math.min(dp[left][right], select + dp[left][right - 1]);
} else {
dp[left][right] = Math.min(dp[left][right], select + Math.max(dp[left][select - 1], dp[select + 1][right]));
}
}
}
}
return dp[1][n];
}
3. 分支法
private int memo[][];
public int getMoneyAmount(int n) {
memo = new int[n + 1][n + 1];
return minCost(1, n);
}
private int minCost(int start, int end) {
if (start >= end) {
return 0;
}
if (memo[start][end] != 0) {
return memo[start][end];
}
int min = Integer.MAX_VALUE;
for (int i = start; i <= end; i++) {
min = Math.min(min, i + Math.max(minCost(start, i - 1), minCost(i + 1, end)));
}
memo[start][end] = min;
return min;
}