R语言可视化(四):频率直方图绘制

04.直方图绘制


清除当前环境中的变量

rm(list=ls())

设置工作目录

setwd("C:/Users/Dell/Desktop/R_Plots/04histogram/")

hist函数绘制频率直方图

# 使用内置mtcars数据集
head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

head(mtcars$mpg)
## [1] 21.0 21.0 22.8 21.4 18.7 18.1

# 基础hist函数绘制频率直方图
hist(mtcars$mpg)
image.png
hist(mtcars$mpg, breaks = 10, col = "red",
     xlab = "Miles per Gallon")
image.png
hist(mtcars$mpg, breaks = 10, col = "blue", 
     freq = F, # 表示不按照频数绘图
     xlab = "Miles per Gallon")
# 添加密度曲线
lines(density(mtcars$mpg),col= "red",lwd=2)
# 添加轴须线
rug(jitter(mtcars$mpg))
image.png

ggplot2包绘制直方图

library(ggplot2)

# 读取示例数据
data <- read.table("demo_histgram.txt")
names(data) <- "length"
head(data)
##   length
## 1     62
## 2    134
## 3    290
## 4    316
## 5     98
## 6    129

ggplot(data,aes(length,..density..)) + xlim(c(0,1000)) + 
  geom_histogram(binwidth = 2, fill="red") + 
  xlab("Insertion Size (bp)") + 
  theme_bw()
image.png
# 使用diamonds内置数据集
head(diamonds)
## # A tibble: 6 x 10
##   carat cut       color clarity depth table price     x     y     z
##   <dbl> <ord>     <ord> <ord>   <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.23  Ideal     E     SI2      61.5    55   326  3.95  3.98  2.43
## 2 0.21  Premium   E     SI1      59.8    61   326  3.89  3.84  2.31
## 3 0.23  Good      E     VS1      56.9    65   327  4.05  4.07  2.31
## 4 0.290 Premium   I     VS2      62.4    58   334  4.2   4.23  2.63
## 5 0.31  Good      J     SI2      63.3    58   335  4.34  4.35  2.75
## 6 0.24  Very Good J     VVS2     62.8    57   336  3.94  3.96  2.48

ggplot(diamonds, aes(carat)) +
  geom_histogram()
image.png
# 设置bin的数目
ggplot(diamonds, aes(carat)) +
  geom_histogram(bins = 200)
image.png
# 设置bin的宽度
ggplot(diamonds, aes(carat)) +
  geom_histogram(binwidth = 0.05)
image.png
# 添加填充色
ggplot(diamonds, aes(price, fill = cut)) +
  geom_histogram(binwidth = 500)
image.png
# You can specify a function for calculating binwidth, which is
# particularly useful when faceting along variables with
# different ranges because the function will be called once per facet
mtlong <- reshape2::melt(mtcars)
## No id variables; using all as measure variables

head(mtlong)
##   variable value
## 1      mpg  21.0
## 2      mpg  21.0
## 3      mpg  22.8
## 4      mpg  21.4
## 5      mpg  18.7
## 6      mpg  18.1

ggplot(mtlong, aes(value, fill=variable)) + facet_wrap(~variable, scales = 'free_x') +
  geom_histogram(binwidth = function(x) 2 * IQR(x) / (length(x)^(1/3)))
image.png

ggpubr包绘制直方图

library(ggpubr)

# Create some data format
set.seed(1234)
wdata = data.frame(
  sex = factor(rep(c("F", "M"), each=200)),
  weight = c(rnorm(200, 55), rnorm(200, 58)))
head(wdata)
##   sex   weight
## 1   F 53.79293
## 2   F 55.27743
## 3   F 56.08444
## 4   F 52.65430
## 5   F 55.42912
## 6   F 55.50606

# Basic density plot
# Add mean line and marginal rug
gghistogram(wdata, x = "weight", 
            fill = "lightgray", # 设置填充色
            add = "mean", # 添加均值线
            rug = TRUE # 添加轴须线
            )
image.png
# Change outline and fill colors by groups ("sex")
# Use custom color palette
gghistogram(wdata, x = "weight",
            add = "mean", rug = TRUE,
            color = "sex", fill = "sex",
            palette = c("#00AFBB", "#E7B800") # 设置画板颜色
            )
image.png
# Combine histogram and density plots
gghistogram(wdata, x = "weight",
            add = "mean", rug = TRUE,
            fill = "sex", palette = c("#00AFBB", "#E7B800"),
            add_density = TRUE # 添加密度曲线
            )
image.png
sessionInfo()
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18363)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.936 
## [2] LC_CTYPE=Chinese (Simplified)_China.936   
## [3] LC_MONETARY=Chinese (Simplified)_China.936
## [4] LC_NUMERIC=C                              
## [5] LC_TIME=Chinese (Simplified)_China.936    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] ggpubr_0.2.1  magrittr_1.5  ggplot2_3.2.0
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.1        plyr_1.8.4        pillar_1.4.2     
##  [4] compiler_3.6.0    tools_3.6.0       zeallot_0.1.0    
##  [7] digest_0.6.20     viridisLite_0.3.0 evaluate_0.14    
## [10] tibble_2.1.3      gtable_0.3.0      pkgconfig_2.0.2  
## [13] rlang_0.4.0       cli_1.1.0         yaml_2.2.0       
## [16] xfun_0.8          withr_2.1.2       dplyr_0.8.3      
## [19] stringr_1.4.0     knitr_1.23        vctrs_0.2.0      
## [22] grid_3.6.0        tidyselect_0.2.5  glue_1.3.1       
## [25] R6_2.4.0          fansi_0.4.0       rmarkdown_1.13   
## [28] reshape2_1.4.3    purrr_0.3.2       scales_1.0.0     
## [31] backports_1.1.4   htmltools_0.3.6   assertthat_0.2.1 
## [34] colorspace_1.4-1  ggsignif_0.5.0    labeling_0.3     
## [37] utf8_1.1.4        stringi_1.4.3     lazyeval_0.2.2   
## [40] munsell_0.5.0     crayon_1.3.4
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343