又双叒叕到了520
天龙八部
大家好,不知道大家看过,天龙八部没?
“天龙八部”是哪八部?“天龙八部”都是“非人”,包括八种神道怪物,因为以“天”及“龙”为首,所以称为“天龙八部”。
八部者,一天,二龙,三夜叉,四乾达婆,五阿修罗,六迦楼罗,七紧那罗,八摩呼罗迦。
看完介绍,还是不懂,没关系,今天主要讲的是,用数据分析,天龙八部里,高频词语,人物关系,以及为什么你还是单身?
自己?
看到下面的词云,为什么”自己“这个词,那么高频?
乍看之下,段誉词频(1551)最高。其实要结合“业务”,实则乔峰才是正主。要从乔峰的身世说起,开头中,乔峰是丐帮帮主,后身世揭破,契丹人也,改名萧峰。
所以乔峰的词频(1900+)=乔峰(963)+萧峰(966)
从词语中,我们可以看出,写作手法,乔峰(段誉)听/笑/呆/动词,所以人物+动词。
人物关系图
故事有好多条主线。
一、寻仇:其中虚竹和乔峰,为什么关系最亲密?因为虚竹的爸是杀死乔峰的爸的带头大哥,寻仇是小说的主线之一。
二、段正淳恋爱史:从另一角度看,可以说是,大理镇南王,段正淳恋爱史,他和几位女人谈恋爱,并生下的都全都是女儿,女儿再一个个,和段誉谈恋爱,搞得段誉很痛苦,最后发现自己,不是亲生的故事。
总结来说
故事是由“慕容博”和“段正淳”,两位大Boss挑起的,各负责一条主线。
慕容博想光复燕国,才策划杀死萧家,企图引起两国战乱,引起萧父报仇;
镇南王,则是负责拈花若草,一身情债,一个人很爽,搞得很多人很痛苦,最后自杀,搞得王夫人、马夫人,各种痛苦,阿朱得替父挡仇,被乔峰错手打死,乔峰痛苦,和段誉谈恋爱有都是自己的妹妹,妹妹、段誉都很痛苦,最后发现自己不是亲生的,释然了。
520又到了,为什么你还单身?
- 段正淳:拈花若草,大boss,没你就没那么多破事了,魅力指数10000。
- 虚竹:憨厚老实,杀人有艳福,从和尚到灵鹫宫主到附马,屌丝逆袭的故事,艳福指数1000;
- 段誉:始终如一,追了王姑娘,几十集电视剧,最后真情打动王语嫣,另一角度看,有点“备胎上位”的感觉,对么?幸福指数,500;
- 王语嫣:从小爱慕表哥,最后被拒,被段誉打动,幸福指数,400;
- 乔峰:丐帮帮主,侠之大者,身世悲惨,想和阿朱牧马放羊,却一掌错杀阿朱,为和平而死,幸福指数,100;
- 阿朱:小婢,从小没有父爱、母爱,一直崇拜乔峰,大英雄,为父挡仇,为“孝”牺“爱”,幸福指数,100;
- 啊紫:执着,只爱乔峰一人,最后很痛苦就是了,痛苦指数5000;
看了那么多故事,依然谈不好恋爱,你们呢?
实战分割线
一、词云
这里主要用到了两个库,jieba分词用的,wordcloud词云用,matplib显示用。
- 下载小说txt文件;
- 准备一张mask(遮罩)图片;
- 字体;
#coding:utf-8
from os import path
from collections import Counter
import jieba
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS
if __name__=='__main__':
#读取文件
d = path.dirname(__file__)
pardir = path.dirname(d)
pardir2 = path.dirname(pardir)
cyqf = path.join(pardir2,'tlbbqf/')
text = open(path.join(d,'tlbb.txt'), encoding="utf-8", errors="surrogateescape").read()
jieba_word = jieba.cut(text, cut_all=False) #cut_all 分词模式
data = []
for word in jieba_word:
data.append(word)
dataDict = Counter(data)
with open('./词频统计.csv', 'w', encoding='utf-8') as fw:
for k,v in dataDict.items():
fw.write("%s,%d\n" % (k,v))
mask = np.array(Image.open(path.join(d, "mask.png")))
font_path=path.join(d,"font.ttf")
stopwords = set(STOPWORDS)
wc = WordCloud(background_color="white",
max_words=2000,
mask=mask,
stopwords=stopwords,
font_path=font_path)
# 生成词云
wc.generate(text)
# 生成的词云图像保存到本地
wc.to_file(path.join(d, "wordcloud.png"))
# 显示图像
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.show()
二、人物关系图
- 统计词频
text = open(path.join(d,'tlbb.txt'), encoding="utf-8", errors="surrogateescape").read()
jieba_word = jieba.cut(text, cut_all=False) #cut_all 分词模式
data = []
for word in jieba_word:
data.append(word)
dataDict = Counter(data)
-
计算人物之间矩阵关系
-
用gephi画出人物关系
首先是导入关系图,逗号、矩阵、utf-8;
然后就是箭头,第一个是显示节点信息,第二、三是调整连线的粗细、颜色;
点击某个节点,例如段誉,可以侧重显示他的人物关系。