十大排序算法之快速排序

1960年由查尔斯·安东尼·理查德·霍尔(Charles Antony Richard Hoare,缩写为C. A. R. Hoare)提出

执行流程

image.png
  1. 从序列中选择一个轴点元素(pivot)
    ✓假设每次选择 0 位置的元素为轴点元素

  2. 利用 pivot 将序列分割成 2 个子序列
    ✓ 将小于 pivot 的元素放在pivot前面(左侧)
    ✓ 将大于 pivot 的元素放在pivot后面(右侧)
    ✓ 等于pivot的元素放哪边都可以

  3. 对子序列进行 ① ② 操作
    ✓ 直到不能再分割(子序列中只剩下1个元素)

  • 快速排序的本质
    逐渐将个每一个元素都转换成轴点元素

实现

    private void sort(int begin, int end) { 
        if (end - begin < 2) return;
        
        // 确定轴点位置 O(n)
        int mid = pivotIndex(begin, end);
        // 对子序列进行快速排序
        sort(begin, mid); 
        sort(mid + 1, end); 
    } 
    
    /**
     * 构造出 [begin, end) 范围的轴点元素
     * @return 轴点元素的最终位置
     */
    private int pivotIndex(int begin, int end) {
        // 随机选择一个元素跟begin位置进行交换
        swap(begin, begin + (int)(Math.random() * (end - begin)));
        
        // 备份begin位置的元素
        T pivot = array[begin];
        // end指向最后一个元素
        end--;
        
        while (begin < end) {
            while (begin < end) {
                if (cmp(pivot, array[end]) < 0) { // 右边元素 > 轴点元素
                    end--;
                } else { // 右边元素 <= 轴点元素
                    array[begin++] = array[end];
                    break;
                }
            }
            while (begin < end) {
                if (cmp(pivot, array[begin]) > 0) { // 左边元素 < 轴点元素
                    begin++;
                } else { // 左边元素 >= 轴点元素
                    array[end--] = array[begin];
                    break;
                }
            }
        }
        
        // 将轴点元素放入最终的位置
        array[begin] = pivot;
        // 返回轴点元素的位置
        return begin;
    }

时间复杂度

  • 在轴点左右元素数量比较均匀的情况下,同时也是最好的情况
    T( n) = 2 ∗ T (n/2) + O (n) = O(nlogn)
  • 如果轴点左右元素数量极度不均匀,最坏情况
    T (n) = T (n − 1) + O (n) = O(n ^2)
  • 为了降低最坏情况的出现概率,一般采取的做法是
    随机选择轴点元素
    ◼ 最好、平均时间复杂度:O(nlogn)
    ◼ 最坏时间复杂度:O(n2)
    ◼ 由于递归调用的缘故,空间复杂度:O(logn)
    ◼ 属于不稳定排序

与轴点相等的元素

image.png

◼ 如果序列中的所有元素都与轴点元素相等,利用目前的算法实现,轴点元素可以将序列分割成 2 个均匀的子序列

◼ 思考:cmp 位置的判断分别改为 ≤、≥ 会起到什么效果?


image.png

◼ 轴点元素分割出来的子序列极度不均匀
导致出现最坏时间复杂度


image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,539评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,594评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,871评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,963评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,984评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,763评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,468评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,850评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,002评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,144评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,823评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,483评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,026评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,150评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,415评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,092评论 2 355