卷积神经网络(CNN)学习心得

推荐教程

卷积神经网络(Convolutional Neural Networks)

常用来分析视觉图像,也可用于自然语言处理等。

卷积神经网络的层级结构

  • 数据输入层/ Input layer
  • 卷积计算层/ CONV layer
  • ReLU激励层 / ReLU layer
  • 池化层 / Pooling layer
  • 全连接层 / FC layer

数据输入层

  • 去均值
  • 归一化
  • PCA/白化

卷积层

训练卷积核
卷积核提取图像边缘之类的特征

卷积神经网络之优缺点

优点
  •共享卷积核,对高维数据处理无压力
  •无需手动选取特征,训练好权重,即得特征分类效果好
缺点
  •需要调参,需要大样本量,训练最好要GPU
  •物理含义不明确(也就说,我们并不知道没个卷积层到底提取到的是什么特征,而且神经网络本身就是一种难以解释的“黑箱模型”)

卷积神经网络之典型CNN

•LeNet,这是最早用于数字识别的CNN
•AlexNet, 2012 ILSVRC比赛远超第2名的CNN,比LeNet更深,用多层小卷积层叠加替换单大卷积层。
•ZF Net, 2013 ILSVRC比赛冠军
•GoogLeNet, 2014 ILSVRC比赛冠军
•VGGNet, 2014 ILSVRC比赛中的模型,图像识别略差于GoogLeNet,但是在很多图像转化学习问题(比如object detection)上效果奇好

扩展想法

旋转?
放大缩小?
卷积层只能提取到局部特征,那么空间特征?全局特征?结构特征?
解释物理模型?

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。