numpy介绍2

numpy介绍2

import numpy
#it will compare the second value to each element in the vector
# If the values are equal, the Python interpreter returns True; otherwise, it returns False
#判断,上等号右边的值与向量内的每个元素比较,返回的值是一个数组,元素类型为布尔型。
vector = numpy.array([5, 10, 15, 20])
vector == 10
array([False,  True, False, False], dtype=bool)
matrix = numpy.array([
                    [5, 10, 15], 
                    [20, 25, 30],
                    [35, 40, 45]
                 ])
matrix == 25
array([[False, False, False],
       [False,  True, False],
       [False, False, False]], dtype=bool)
#Compares vector to the value 10, which generates a new Boolean vector [False, True, False, False]. It assigns this result to equal_to_ten
vector = numpy.array([5, 10, 15, 20])
equal_to_ten = (vector == 10)
print equal_to_ten
print(vector[equal_to_ten])
#将布尔类型作为索引,实际上是两个矩阵相乘
[False  True False False]
[10]
vector1 = numpy.array([5, 10, 15, 20])
vector2 = numpy.array([False , True, False ,False])
print(vector1[vector2])
[10]
matrix = numpy.array([
                [5, 10, 15], 
                [20, 25, 30],
                [35, 40, 45]
             ])
second_column_25 = (matrix[:,1] == 25)
print second_column_25
print(matrix[second_column_25, :])
#对于多维矩阵也是一样。先运算得出结果矩阵,把这个矩阵作为过滤索引矩阵来使用。
#两个矩阵相乘就能得出结果。

[False  True False]
[[20 25 30]]
#We can also perform comparisons with multiple conditions
#多个条件的比较
vector = numpy.array([5, 10, 15, 20])
equal_to_ten_and_five = (vector == 10) & (vector == 5)#与
print equal_to_ten_and_five
[False False False False]
vector = numpy.array([5, 10, 15, 20])
equal_to_ten_or_five = (vector == 10) | (vector == 5)#或
print equal_to_ten_or_five
[ True  True False False]
vector = numpy.array([5, 10, 15, 20])
equal_to_ten_or_five = (vector == 10) | (vector == 5)
vector[equal_to_ten_or_five] = 50#将索引为0,1的元素赋值为50
print(vector)
[50 50 15 20]
matrix = numpy.array([
            [5, 10, 15], 
            [20, 25, 30],
            [35, 40, 45]
         ])
second_column_25 = matrix[:,1] == 25
print second_column_25
matrix[second_column_25, 1] = 10
print matrix
[False  True False]
[[ 5 10 15]
 [20 10 30]
 [35 40 45]]
#We can convert the data type of an array with the ndarray.astype() method.
#.astype()方法强转类型。
vector = numpy.array(["1", "2", "3"])
print vector.dtype
print vector
vector = vector.astype(float)
print vector.dtype
print vector
|S1
['1' '2' '3']
float64
[ 1.  2.  3.]
vector = numpy.array([5, 10, 15, 20])
vector.sum()#求统计值。min,max,
#使用print(help(numpy.array))来打印帮助信息。
50
# The axis dictates which dimension we perform the operation on
#1 means that we want to perform the operation on each row, and 0 means on each column
matrix = numpy.array([
                [5, 10, 15], 
                [20, 25, 30],
                [35, 40, 45]
             ])
matrix.sum(axis=1)#求每一行的和
array([ 30,  75, 120])
matrix = numpy.array([
                [5, 10, 15], 
                [20, 25, 30],
                [35, 40, 45]
             ])
matrix.sum(axis=0)

array([60, 75, 90])

如何来处理那些无法数值处理的数据?

#replace nan value with 0
world_alcohol = numpy.genfromtxt("world_alcohol.txt", delimiter=",")
#会有很多nan值
#print world_alcohol
is_value_empty = numpy.isnan(world_alcohol[:,4])
#我们只要列索引为4的数据
#print is_value_empty
world_alcohol[is_value_empty, 4] = '0'
#对于为nan的多转换成0
alcohol_consumption = world_alcohol[:,4]
#取出第5列数据
alcohol_consumption = alcohol_consumption.astype(float)
#强转为浮点型
total_alcohol = alcohol_consumption.sum()
average_alcohol = alcohol_consumption.mean()
print total_alcohol
print average_alcohol
1137.78
1.14006012024
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,701评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,649评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,037评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,994评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,018评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,796评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,481评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,370评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,868评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,014评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,153评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,832评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,494评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,039评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,437评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,131评论 2 356

推荐阅读更多精彩内容