20.11.16 xgboost初探

0. 提升树

首先要明确一点,xgboost 是基于提升树的。

什么是提升树,简单说,就是一个模型表现不好,我继续按照原来模型表现不好的那部分训练第二个模型,依次类推。

来几个形象的比喻就是:

做题的时候,第一个人做一遍得到一个分数,第二个人去做第一个人做错的题目,第三个人去做第二个人做错的题目,以此类推,不停的去拟合从而可以使整张试卷分数可以得到100分(极端情况)。

把这个比喻替换到模型来说,就是真实值为100,第一个模型预测为90,差10分,第二个模型以10为目标值去训练并预测,预测值为7,差三分,第三个模型以3为目标值去训练并预测,以此类推。

1. xgboost原理解读

1.0 学习路径

我们xgboost的学习路径可以按照下面四个步骤来:

(1)构造原始目标函数问题:
xgboost目标函数包含损失函数和基于树的复杂度的正则项;

(2)泰勒展开问题:
原始目标函数直接优化比较难,如何使用泰勒二阶展开进行近似;
(3)树参数化问题:
假设弱学习器为树模型,如何将树参数化,并入到目标函数中;这一步的核心就是要明白我们模型优化的核心就是优化参数,没有参数怎么训练样本,怎么对新样本进行预测呢?

(4)如何优化化简之后的目标函数问题:
优化泰勒展开并模型参数化之后的的目标函数,主要包含两个部分:

  • 如何求得叶子节点权重
  • 如何进行树模型特征分割

1.1 目标函数

1.1.0 原始目标函数
目标函数,可以分为两个部分,一部分是损失函数,一部分是正则(用于控制模型的复杂度)。

xgboost属于一种前向迭代的模型,会训练多棵树。

对于第t颗树,第i个样本的,模型的预测值是这样的:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容

  • 本章涉及到的知识点清单:1、boosting模式2、集成学习模型的偏差和方差3、bagging的偏差和方差4、bo...
    PrivateEye_zzy阅读 4,812评论 0 6
  • xgboost公式推导 基本构成 boosted tree作为有监督学习算法有几个重要部分:模型、参数、目标函数、...
    叫我老村长阅读 1,255评论 0 4
  •   xgboost是各种比赛中最常使用的方法,网上介绍非常多,但是大部分看起来都比较费劲,这篇文章我将通俗的讲一下...
    不分享的知识毫无意义阅读 43,131评论 4 20
  • Xgboost 从陈天奇的PPT中进行总结,重点了解模型的构建,策略的选择和优化算法的选取。 基础 机器学习的目标...
    Mereder阅读 1,608评论 0 1
  • 一、XgBoost算法简介 在数据建模中,经常采用Boosting方法通过将成百上千个分类准确率较低的树模型...
    owolf阅读 2,636评论 0 2