275 H-Index II H 指数 II
Description:
Given an array of citations sorted in ascending order (each citation is a non-negative integer) of a researcher, write a function to compute the researcher's h-index.
According to the definition of h-index on Wikipedia: "A scientist has index h if h of his/her N papers have at least h citations each, and the other N − h papers have no more than h citations each."
Example:
Input: citations = [0,1,3,5,6]
Output: 3
Explanation: [0,1,3,5,6] means the researcher has 5 papers in total and each of them had
received 0, 1, 3, 5, 6 citations respectively.
Since the researcher has 3 papers with at least 3 citations each and the remaining
two with no more than 3 citations each, her h-index is 3.
Note:
If there are several possible values for h, the maximum one is taken as the h-index.
Follow up:
This is a follow up problem to H-Index, where citations is now guaranteed to be sorted in ascending order.
Could you solve it in logarithmic time complexity?
题目描述:
给定一位研究者论文被引用次数的数组(被引用次数是非负整数),数组已经按照 升序排列 。编写一个方法,计算出研究者的 h 指数。
h 指数的定义: “h 代表“高引用次数”(high citations),一名科研人员的 h 指数是指他(她)的 (N 篇论文中)总共有 h 篇论文分别被引用了至少 h 次。(其余的 N - h 篇论文每篇被引用次数不多于 h 次。)"
示例 :
输入: citations = [0,1,3,5,6]
输出: 3
解释: 给定数组表示研究者总共有 5 篇论文,每篇论文相应的被引用了 0, 1, 3, 5, 6 次。
由于研究者有 3 篇论文每篇至少被引用了 3 次,其余两篇论文每篇被引用不多于 3 次,所以她的 h 指数是 3。
说明:
如果 h 有多有种可能的值 ,h 指数是其中最大的那个。
进阶:
这是 H 指数 的延伸题目,本题中的 citations 数组是保证有序的。
你可以优化你的算法到对数时间复杂度吗?
思路:
- 由于数组已经有序, 考虑使用二分法
找到一个使得 citations[mid] >= citations.size() - mid的最左边的值即可
时间复杂度O(lgn), 空间复杂度O(1)
代码:
C++:
class Solution
{
public:
int hIndex(vector<int>& citations)
{
int left = 0, right = citations.size() - 1, mid, result = 0;
while (left <= right)
{
mid = left + ((right - left) >> 1);
if (citations[mid] >= citations.size() - mid)
{
result = citations.size() - mid;
right = mid - 1;
}
else left = mid + 1;
}
return result;
}
};
Java:
class Solution {
public int hIndex(int[] citations) {
int left = 0, right = citations.length - 1, mid, result = 0;
while (left <= right) {
mid = left + ((right - left) >> 1);
if (citations[mid] >= citations.length - mid) {
result = citations.length - mid;
right = mid - 1;
}
else left = mid + 1;
}
return result;
}
}
Python:
class Solution:
def hIndex(self, citations: List[int]) -> int:
return max((len(citations) - i for i in range(len(citations)) if citations[i] >= len(citations) - i), default=0)