802. Find Eventual Safe States

In a directed graph, we start at some node and every turn, walk along a directed edge of the graph. If we reach a node that is terminal (that is, it has no outgoing directed edges), we stop.

Now, say our starting node is eventually safe if and only if we must eventually walk to a terminal node. More specifically, there exists a natural number K so that for any choice of where to walk, we must have stopped at a terminal node in less than K steps.

Which nodes are eventually safe? Return them as an array in sorted order.

The directed graph has N nodes with labels 0, 1, ..., N-1, where N is the length of graph. The graph is given in the following form: graph[i] is a list of labels j such that (i, j) is a directed edge of the graph.

Example:
Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
Output: [2,4,5,6]
Here is a diagram of the above graph.
Illustration of graph

Note:

  • graph will have length at most 10000.
  • The number of edges in the graph will not exceed 32000.
  • Each graph[i] will be a sorted list of different integers, chosen within the range [0, graph.length - 1].

一刷:
题解:
其实就是让判断一个点是不是出于环中,输出所有无环的路径上的点。
于是很明显是dfs,并且可以用dp, 即map来存储中间结果

class Solution {
    public List<Integer> eventualSafeNodes(int[][] graph) {
         Map<Integer, Boolean> map = new HashMap<>();
         int len = graph.length;
         
        
        for(int i = 0; i<graph.length; i++){
            boolean[] visited = new boolean[len];
            if(map.containsKey(i)) continue;
            boolean status = true;
            int[] neighbor = graph[i];
            if(neighbor.length == 0) map.put(i, true);
            for(int n : neighbor){
                status = status && dfs(n, map, graph, visited);
            }
            map.put(i, status);
        }
        
        List<Integer> res = new ArrayList<>();
        for (Map.Entry<Integer, Boolean> entry : map.entrySet())
        {
            if(entry.getValue()) res.add(entry.getKey());
        }
        return res;
    }
    
    private boolean dfs(int i, Map<Integer, Boolean> map, int[][] graph, boolean[] visited){
        if(map.containsKey(i)) return map.get(i);
        if(visited[i]){
            map.put(i, false);
            return false;
        }
        visited[i] = true;
        
        int[] neighbor = graph[i];
        if(neighbor.length == 0){
            map.put(i, true);
            return true;
        }
        boolean status = true;
        for(int node : neighbor){
            status = status && dfs(node, map, graph, visited);
        }
        map.put(i, status);
        return status;
    }
}

在discuss看到一个很好的思路,我们可以把map和visited数组combine, 如果为2,表示有环(该次visited过),如果为1, 表示之前已经检查过,没有环

class Solution {
    public List<Integer> eventualSafeNodes(int[][] graph) {
        List<Integer> res = new ArrayList<>();
        if(graph == null || graph.length == 0) return res;
        
        int nodeCount = graph.length;
        int[] color = new int[nodeCount];
        for(int i=0; i<nodeCount; i++){
            if(dfs(graph, i, color)) res.add(i);
        }
        return res;
    }
    
    private boolean dfs(int[][] graph, int start, int[] color){
        if(color[start] != 0)   return color[start] == 1;//1->true, 2->false
        color[start] = 2;
        for(int neighbor : graph[start]){
            if(!dfs(graph, neighbor, color)) return false;
        }
        color[start] = 1;
        return true;
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 今天是女儿四岁的生日。 昨晚,我们躺着讲故事聊天。 正准备道晚安睡觉,他忽然关了灯和房门。 然后他在黑暗中摸摸索索...
    小牧妈妈阅读 4,430评论 0 1
  • (稻盛哲学学习会)打卡第5天 姓名:范学雷 部门:国际贸易部 组别:待定 【知~学习】 诵读《活法》将要实现的状态...
    James_anjian阅读 1,607评论 0 0
  • 不记得在哪里看过一句话:“唯有爱与美食不可辜负。”我就深深地迷恋这句简单的话语。总觉得爱与美食之间有一种玄妙的关系...
    燕燕芭比阅读 1,846评论 0 0
  • Thomas S. Monson曾说:圣诞,是不求回报地付出。它是一种幸福,因为我们看到人群的欢愉;是一种自我遗忘...
    小艾侃侃阅读 1,189评论 0 0
  • 最近,加了几个微信好友,都是从qq好友那边过渡过来的。很麻烦,必须查找qq好友的qq号,再在微信上输入查找的qq号...
    帅姐赖皮红阅读 4,114评论 9 12

友情链接更多精彩内容