第七课 wordcount详解shuffle机制

本文主要以wordcount为例详细阐述shuffle的实现过程

一、map方法执行之前

image.png

我们知道,HDFS里的文件是分块存放在Datanode上面的,而我们写的mapper程序也是跑在各个节点上的。这里就涉及到一个问题,哪一个节点上的mapper读哪一些节点上的文件块呢?hadoop会自动将这个文件分片(split),得到好多split,这每一个split放到一个节点的一个mapper里面去读。然后在每一台有mapper任务的节点上都执行了这么一个操作,将分得到的split切割成一行一行的键值对,然后传给map方法。键是这每一行在split中的偏移量,值是每一行得到的字符串。

二、执行map方法

image.png

写过wordcount的朋友都知道,这个过程就是读到每一行,切割字符串,生成键值对写出去。

三、shuffle操作(一)

这个过程是在有map任务的节点上完成的

image.png

1. partition

将得到的键值对按照一定的规则分组,例如例子中将首字母为a的全部分到一组,将首字母为b的分到一组。这里只是为了讲明白这个方式,进行了过程简化,实际不一定是分为两组,也不一定是按照首字母分组。

2. sort

对每一个组中的键值对根据键的哈希码排序。

3. combine

将具有相同键的键值对合成一个新的键值对,这个新的键值对的键是原来的键,键值是所有键的键值之和。

四、shuffle操作(二)

这个过程是在有reduce任务的节点上完成的。

image.png

1. 拉取partition

hadoop决定有多少个reducer的时候会规定有多少个partition,每一个reducer拉取自己要处理的那个分组的全部成员。例如,某台节点要处理所有以a开头的键值对,它就会将所有mapper中的以a开头的那一组全部拉取过来。

2. merge

在每一个reducer上,将具有相同键的键值对生成另外一个新的键值对,键是以前的键,键值是一个以前键值的集合。

3. sort

在每一台reducer节点上,将新生成的键值对进行排序,根据 哈希码值。

五、reduce操作

image.png

写过wordcount的朋友都知道,在reduce方法中,hadoop回传过来一个一个的键值对,键是每一个单词,键值就是四中新生成的键值对的键值。执行reduce操作,就是将每一个键值对中的键值累加起来。然后以键值对的形式将结果写出去。

六、文件写入HDFS

image.png

在每一台reducer节点上将文件写入,实际上是写成一个一个的文件块,但对外的表现形式是一整个大的结果文件。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,997评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,603评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,359评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,309评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,346评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,258评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,122评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,970评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,403评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,596评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,769评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,464评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,075评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,705评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,848评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,831评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,678评论 2 354

推荐阅读更多精彩内容

  • MapReduce执行流程 MapReduce的执行步骤 1、Map任务处理 1.1 读取HDFS中的文件。每一行...
    依天立业阅读 2,237评论 0 8
  • 目的这篇教程从用户的角度出发,全面地介绍了Hadoop Map/Reduce框架的各个方面。先决条件请先确认Had...
    SeanC52111阅读 1,725评论 0 1
  • 本文主要以wordcount为例详细阐述shuffle的实现过程 一、map方法执行之前 我们知道,HDFS里的文...
    __豆约翰__阅读 537评论 0 2
  • 二年级以来,别的孩子都在有意识的提高作文,我也希望孩子能练练作文,但是没有老师指导,该如何提高孩子的作文水平呢? ...
    笨抖抖阅读 403评论 0 0
  • 跟上篇一样,知乎看到的一个问答,很棒,分享给大家。 中国老一辈导演经受得住新时代IP电影,甚至只是新贵导演的冲击吗...
    小粥哥阅读 824评论 1 2