Authors: Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine from Google Brain
ABSTRACT
We study the problem of representation learning in goal-conditioned hierarchical reinforcement learning.
In such hierarchical structures, a higher-level controller solves tasks by iteratively communicating goals which a lower-level policy is trained to reach.
Accordingly, the choice of representation – the mapping of observation space to goal space – is crucial. To study this problem, we develop a notion of sub-optimality of a representation, defined in terms of expected reward of the optimal hierarchical policy using this representation.
We derive expressions which bound the sub-optimality and show how these expressions can be translated to representation learning objectives which may be optimized in practice.
Results on a number of difficult continuous-control tasks show that our approach to representation learning yields qualitatively better representations as well as quantitatively better hierarchical policies, compared to existing methods.