Two Sigma Phone Screen Summary

How does Hash Table work

Hash Table stores key, value pairs into an array of buckets/slots. Given an input key, it uses a hash function to compute the index of this array, to compute where to put the key, value pair. The key of hash function is to key keys as uniformly disturbed, and as spread out as possible. For example, java hash function (magic number 31):

int hushfunc(string key){
   int sum = 0;
   for(int i=0; i<key.length(); i++){
       sum = sum * 31 + (int)key[i];
       sum %= hash_table_size;
    }
    return sum;
}
Closed Hashing vs Open Hashing

Open Hashing: use linked list, add linked list to the same bucket.
Closed Hashing (Open addressing): Use different probing technique, or double hashing, to calculate the interval between probes. Also, hash table needs rehashing, when size reaches around 1/10 of capacity.
Closed hashing has better performance when load size is small.

Thread vs Process

Both are independent sequences of code execution. Thread lives within process, and the threads within same process sharing same memory space. They have the same heap, data, code. Yet each thread has their own stack/program counter. When process dies, all threads within it dies.
One process can have its own virtual memory space, and threads lives within it.

Inter-thread communication:

passing references to objects, and changing shared objects,

Inter-process communication:

passing copied reference to processes.

Difference between Quicksort and Mergesort

Quicksort the space complexity is O(logn), for the stack space, Mergesort the space complexity is O(n).
Mergesort guarantees the time complexity will be O(logn); Quicksort time performance depends on the selection of pivot. Worst case can be O(n2). Yet, quicksort stands out in the following three places.

  1. It's in place, and doesn't requires extra memory.
  2. Has a small hidden time factor.
  3. Since it's in place, and no extra memory, it has better cache performance.
Throughput vs Latency

Definition wise:
Latency is the time required to perform some action or to produce some result. Latency is measured in units of time: hours, minutes, seconds, nanoseconds or clock periods.
Throughput is the number of such actions executed or results produced per unit of time.

Compare Floating Points:
#include <stdbool.h>
bool Equality(double a, double b, double  margin){
  if (fabs(a-b) < margin) return true;
  return false;
}
margin can be DBL_EPSILON(minimum meaningful double)
How to store floating point:

Float:
1-bit Sign, 8-bit Exponent, 23-bit Mantissa (尾数),
Double 1-bit Sign, 11-bit Exponent, 52-bit Mantissa.

Paste_Image.png

Question, I know the company is using algorithms, and scientific ways to approach the trading strategy. Could you please explain me a little more details on the Role I am applying, and what is your expectation from a candidate like me, to fit the job.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容