1. 数据增强Data Augmentation
- 数据增强让有限的数据产生更多的数据,增加训练样本的数量以及多样性(噪声数据),提升模型鲁棒性。神经网络需要大量的参数,许许多多的神经网路的参数都是数以百万计,而使得这些参数可以正确工作则需要大量的数据进行训练,但在很多实际的项目中,我们难以找到充足的数据来完成任务。
- 随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。
- 例如,我们可以对图像进行不同方式的裁剪,让物体以不同的实例出现在图像的不同位置,这同样能够降低模型对目标位置的敏感性。
- 例如,我们也可以调整亮度、对比度、饱和度和色调 等因素来降低模型对 色彩的敏感度。
2. 数据增强的分类
数据增强可以分为两类,一类是离线增强,一类是在线增强。
离线增强 : 直接对数据集进行处理,数据的数目会变成增强因子乘以原数据集的数目,这种方法常常用于数据集很小的时候。
在线增强 : 这种增强的方法用于,获得 batch 数据之后,然后对这个 batch 的数据进行增强,如旋转、平移、翻折等相应的变化,由于有些数据集不能接受线性级别的增长,这种方法长用于大的数据集,很多机器学习框架已经支持了这种数据增强方式,并且可以使用 GPU 优化计算。
3. 数据增强实现
数据增强一般是图像用的多,都是一些常用的方法,比如random crop,随机反转,随机对比度增强,颜色变化等等,一般来讲随机反转和一个小比例的random resize,再接random crop比较常用。NLP中将字和词连接起来就形成了一个新样本,也属于数据增强。
图片数据增强通常只是针对训练数据,对于测试数据则用得较少。
3.1 PIL 实现
# -*- coding:utf-8 -*-
"""数据增强
1. 翻转变换 flip
2. 随机修剪 random crop
3. 色彩抖动 color jittering
4. 平移变换 shift
5. 尺度变换 scale
6. 对比度变换 contrast
7. 噪声扰动 noise
8. 旋转变换/反射变换 Rotation/reflection
author: XiJun.Gong
date:2016-11-29
"""
from PIL import Image, ImageEnhance, ImageOps, ImageFile
import numpy as np
import random
import threading, os, time
import logging
logger = logging.getLogger(__name__)
ImageFile.LOAD_TRUNCATED_IMAGES = True
class DataAugmentation:
"""
包含数据增强的八种方式
"""
def __init__(self):
pass
@staticmethod
def openImage(image):
return Image.open(image, mode="r")
@staticmethod
def randomRotation(image, mode=Image.BICUBIC):
"""
对图像进行随机任意角度(0~360度)旋转
:param mode 邻近插值,双线性插值,双三次B样条插值(default)
:param image PIL的图像image
:return: 旋转转之后的图像
"""
random_angle = np.random.randint(1, 360)
return image.rotate(random_angle, mode)
@staticmethod
def randomCrop(image):
"""
对图像随意剪切,考虑到图像大小范围(68,68),使用一个一个大于(36*36)的窗口进行截图
:param image: PIL的图像image
:return: 剪切之后的图像
"""
image_width = image.size[0]
image_height = image.size[1]
crop_win_size = np.random.randint(40, 68)
random_region = (
(image_width - crop_win_size) >> 1, (image_height - crop_win_size) >> 1, (image_width + crop_win_size) >> 1,
(image_height + crop_win_size) >> 1)
return image.crop(random_region)
@staticmethod
def randomColor(image):
"""
对图像进行颜色抖动
:param image: PIL的图像image
:return: 有颜色色差的图像image
"""
random_factor = np.random.randint(0, 31) / 10. # 随机因子
color_image = ImageEnhance.Color(image).enhance(random_factor) # 调整图像的饱和度
random_factor = np.random.randint(10, 21) / 10. # 随机因子
brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor) # 调整图像的亮度
random_factor = np.random.randint(10, 21) / 10. # 随机因1子
contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor) # 调整图像对比度
random_factor = np.random.randint(0, 31) / 10. # 随机因子
return ImageEnhance.Sharpness(contrast_image).enhance(random_factor) # 调整图像锐度
@staticmethod
def randomGaussian(image, mean=0.2, sigma=0.3):
"""
对图像进行高斯噪声处理
:param image:
:return:
"""
def gaussianNoisy(im, mean=0.2, sigma=0.3):
"""
对图像做高斯噪音处理
:param im: 单通道图像
:param mean: 偏移量
:param sigma: 标准差
:return:
"""
for _i in range(len(im)):
im[_i] += random.gauss(mean, sigma)
return im
# 将图像转化成数组
img = np.asarray(image)
img.flags.writeable = True # 将数组改为读写模式
width, height = img.shape[:2]
img_r = gaussianNoisy(img[:, :, 0].flatten(), mean, sigma)
img_g = gaussianNoisy(img[:, :, 1].flatten(), mean, sigma)
img_b = gaussianNoisy(img[:, :, 2].flatten(), mean, sigma)
img[:, :, 0] = img_r.reshape([width, height])
img[:, :, 1] = img_g.reshape([width, height])
img[:, :, 2] = img_b.reshape([width, height])
return Image.fromarray(np.uint8(img))
@staticmethod
def saveImage(image, path):
image.save(path)
def makeDir(path):
try:
if not os.path.exists(path):
if not os.path.isfile(path):
# os.mkdir(path)
os.makedirs(path)
return 0
else:
return 1
except Exception, e:
print str(e)
return -2
def imageOps(func_name, image, des_path, file_name, times=5):
funcMap = {"randomRotation": DataAugmentation.randomRotation,
"randomCrop": DataAugmentation.randomCrop,
"randomColor": DataAugmentation.randomColor,
"randomGaussian": DataAugmentation.randomGaussian
}
if funcMap.get(func_name) is None:
logger.error("%s is not exist", func_name)
return -1
for _i in range(0, times, 1):
new_image = funcMap[func_name](image)
DataAugmentation.saveImage(new_image, os.path.join(des_path, func_name + str(_i) + file_name))
opsList = {"randomRotation", "randomCrop", "randomColor", "randomGaussian"}
def threadOPS(path, new_path):
"""
多线程处理事务
:param src_path: 资源文件
:param des_path: 目的地文件
:return:
"""
if os.path.isdir(path):
img_names = os.listdir(path)
else:
img_names = [path]
for img_name in img_names:
print img_name
tmp_img_name = os.path.join(path, img_name)
if os.path.isdir(tmp_img_name):
if makeDir(os.path.join(new_path, img_name)) != -1:
threadOPS(tmp_img_name, os.path.join(new_path, img_name))
else:
print 'create new dir failure'
return -1
# os.removedirs(tmp_img_name)
elif tmp_img_name.split('.')[1] != "DS_Store":
# 读取文件并进行操作
image = DataAugmentation.openImage(tmp_img_name)
threadImage = [0] * 5
_index = 0
for ops_name in opsList:
threadImage[_index] = threading.Thread(target=imageOps,
args=(ops_name, image, new_path, img_name,))
threadImage[_index].start()
_index += 1
time.sleep(0.2)
if __name__ == '__main__':
threadOPS("/home/pic-image/train/12306train",
"/home/pic-image/train/12306train3")
3.2 TensorFlow 实现
#encoding:utf-8
'''
tf 参考链接 :https://tensorflow.google.cn/api_guides/python/image
增加数据量,减轻过拟合,增强模型的泛化能力
在预测时也可以使用
'''
import numpy as np
import os
import math
import tensorflow as tf
from skimage import io
import random
import matplotlib.pyplot as plt
def read_image(image_path):
image_raw_data = tf.gfile.FastGFile(image_path,'rb').read()
image_data = tf.image.decode_png(image_raw_data)
return image_data
'''
#图像大小的调整,放大缩小
不同尺寸
tf.image.resize_images(img,size,size,method), 0,默认 双线性插值;1,最近邻算法;
2, 双3次插值法;3,面积插值法
'''
def resize_image(image_data):
res = []
image_biliner = tf.image.resize_images(image_data,[256,256],method=0)
image_nn = tf.image.resize_images(image_data,[256,256],method=1)
image_bicubic = tf.image.resize_images(image_data,[256,256],method=2)
image_area = tf.image.resize_images(image_data,[256,256],method=3)
res.append(tf.to_int32(image_biliner))
res.append(tf.to_int32(image_nn))
res.append(tf.to_int32(image_bicubic))
res.append(tf.to_int32(image_area))
return res
'''
#裁剪
识别不同位置的物体
'''
def crop_image(image_data):
res = []
#在中间位置进行裁剪或者周围填充0
image_crop = tf.image.resize_image_with_crop_or_pad(image_data,256,256)
image_pad = tf.image.resize_image_with_crop_or_pad(image_data,512,512)
#按照比列 裁剪图像的中心区域
image_center_crop = tf.image.central_crop(image_data,0.5)
#随机裁剪(常用方法)
image_random_crop0 = tf.random_crop(image_data,[300,300,3])
image_random_crop1 = tf.random_crop(image_data,[300,300,3])
res.append(tf.to_int32(image_crop))
res.append(tf.to_int32(image_pad))
res.append(tf.to_int32(image_center_crop))
res.append(tf.to_int32(image_random_crop0))
res.append(tf.to_int32(image_random_crop1))
return res
'''
#旋转(镜像)
图像旋转不会影响识别的结果,可以在多个角度进行旋转,使模型可以识别不同角度的物体
当旋转或平移的角度较小时,可以通过maxpooling来保证旋转和平移的不变性。
'''
def flip_image(image_data):
#镜像
res = []
#上下翻转
image_up_down_flip = tf.image.flip_up_down(image_data)
#左右翻转
image_left_right_filp = tf.image.flip_left_right(image_data)
#对角线旋转
image_transpose = tf.image.transpose_image(image_data)
#旋转90度
image_rot1 = tf.image.rot90(image_data,1)
image_rot2 = tf.image.rot90(image_data,2)
image_rot3 = tf.image.rot90(image_data,3)
res.append(tf.to_int32(image_up_down_flip))
res.append(tf.to_int32(image_left_right_filp))
res.append(tf.to_int32(image_transpose))
res.append(tf.to_int32(image_rot1))
res.append(tf.to_int32(image_rot2))
res.append(tf.to_int32(image_rot3))
return res
#图像色彩调整
'''
根据原始数据模拟出更多的不同场景下的图像
brightness(亮度),适应不同光照下的物体
constrast(对比度), hue(色彩), saturation(饱和度)
可自定义和随机
'''
def color_image(image_data):
res = []
image_random_brightness = tf.image.random_brightness(image_data,0.5)
image_random_constrast = tf.image.random_contrast(image_data,0,1)
image_random_hue = tf.image.random_hue(image_data,0.5)
image_random_saturation = tf.image.random_saturation(image_data,0,1)
#颜色空间变换
images_data = tf.to_float(image_data)
image_hsv_rgb = tf.image.rgb_to_hsv(images_data)
# image_gray_rgb = tf.image.rgb_to_grayscale(image_data)
# image_gray_rgb = tf.expand_dims(image_data[2],1)
res.append(tf.to_int32(image_random_brightness))
res.append(tf.to_int32(image_random_constrast))
res.append(tf.to_int32(image_random_hue))
res.append(tf.to_int32(image_random_saturation))
res.append(tf.to_int32(image_hsv_rgb))
return res
#添加噪声
def PCA_Jittering(img):
img_size = img.size/3
print(img.size,img_size)
img1= img.reshape(int(img_size),3)
img1 = np.transpose(img1)
img_cov = np.cov([img1[0], img1[1], img1[2]])
#计算矩阵特征向量
lamda, p = np.linalg.eig(img_cov)
p = np.transpose(p)
#生成正态分布的随机数
alpha1 = random.normalvariate(0,0.2)
alpha2 = random.normalvariate(0,0.2)
alpha3 = random.normalvariate(0,0.2)
v = np.transpose((alpha1*lamda[0], alpha2*lamda[1], alpha3*lamda[2])) #加入扰动
add_num = np.dot(p,v)
img2 = np.array([img[:,:,0]+add_num[0], img[:,:,1]+add_num[1], img[:,:,2]+add_num[2]])
img2 = np.swapaxes(img2,0,2)
img2 = np.swapaxes(img2,0,1)
return img2
def main(_):
image_path = 'dog.png'
image_data = read_image(image_path)
img = tf.image.per_image_standardization(image_data)
resize = resize_image(image_data)
crop = crop_image(image_data)
flip = flip_image(image_data)
color = color_image(image_data)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
img, resize_res, crop_res, flip_res, color_res = sess.run([img,
resize,crop,flip,color])
res = []
res.append(resize_res)
res.append(crop_res)
res.append(flip_res)
res.append(color_res)
for cat in res:
fig = plt.figure()
num = 1
for i in cat:
x = math.ceil(len(cat)/2) #向上取整
fig.add_subplot(2,x,num)
plt.imshow(i)
num = num+1
plt.show()
img = PCA_Jittering(img)
plt.imshow(img)
plt.show()
if __name__ == '__main__':
tf.app.run()
3.3 Keras 实现
#!/usr/bin/env python
#-*- coding: utf-8 -*-
# import packages
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
datagen = ImageDataGenerator(
rotation_range=0.2,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
img = load_img('~/Desktop/lena.jpg') # this is a PIL image, please replace to your own file path
x = img_to_array(img) # this is a Numpy array with shape (3, 150, 150)
x = x.reshape((1,) + x.shape) # this is a Numpy array with shape (1, 3, 150, 150)
# the .flow() command below generates batches of randomly transformed images
# and saves the results to the `preview/` directory
i = 0
for batch in datagen.flow(x,
batch_size=1,
save_to_dir='~/Desktop/preview',
save_prefix='lena',
save_format='jpg'):
i += 1
if i > 20:
break # otherwise the generator would loop indefinitely
3.4 Pytorch实现
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision.datasets import CIFAR10
from utils import train, resnet
from torchvision import transforms as tfs
# 使用数据增强
def train_tf(x):
im_aug = tfs.Compose([
tfs.Resize(120),
tfs.RandomHorizontalFlip(),
tfs.RandomCrop(96),
tfs.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
tfs.ToTensor(),
tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
x = im_aug(x)
return x
def test_tf(x):
im_aug = tfs.Compose([
tfs.Resize(96),
tfs.ToTensor(),
tfs.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
x = im_aug(x)
return x
train_set = CIFAR10('./data', train=True, transform=train_tf)
train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
test_set = CIFAR10('./data', train=False, transform=test_tf)
test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)
net = resnet(3, 10)
optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
train(net, train_data, test_data, 10, optimizer, criterion)
3.5 imgaug 图像增强库实现
更加去参考:https://github.com/aleju/imgaug
4. 总结
数据增强主要对训练数据进行操作的一种正则化技术。顾名思义,数据增强通过应用一系列方法随机地改变训练数据,比如平移,旋转,剪切和翻转等。数据增强的详细变换幅度需要根据具体的应用数据而设计,只要注意一点:应用这些简单的转换不能改变输入图像的标签。每个通过增强得到的图像都可以被认为是一个“新”图像。这样我们可以不断的给模型提供新的训练样本,使模型能够学习到更加具有辨别力,更具泛化性的特征。
应用数据增强技术可以提高模型的准确率,同时有助于减轻过拟合。此外,数据增强也可以增加数据量,降低深度学习需要的人工标记的大量数据集。尽管收集“自然”的训练样本越多越好,但是在无法增加真实的训练样本时,数据增强可以用来克服小数据集的局限性。