代码如图所示
KNN的过程
代码1:
from math import sqrt//导入平方根函数
distance-=【】
for x_train in X_train
d =sqrt(np.sum(( x_train - x)**2))
distance append(d)
distances .show()
nearest = np.argsort(distances)
k=6
topK_y =[y_train[i] for i in nearest[:k]]
topK_y
from collections import counter//对于数据属性出现频率进行记录
votes = Counter({0:1,1:5})
votes.most_common(2)//找出票数最多的2个元素
predict_y = votes.most_common(1)[0][0]