第一步:下载数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
第二步:创建输入,输出,权重和偏差,并定义softmax回归算法
x = tf.placeholder(tf.float32,[None,784])
y_ = tf.placeholder("float",[None,10])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W)+b)
第三步:定义损失函数和梯度下降算法
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
第四步:开启对话,进行训练
#在session中启动模型
sess = tf.Session()
sess.run(init)
#开始训练
for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys})
if i % 100 == 0:
print(i)
第五步:验证
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels}))
完整代码
import tensorflow as tf
#下载数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
#定义输入输出
x = tf.placeholder(tf.float32,[None,784])
y_ = tf.placeholder("float",[None,10])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W)+b)
#定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),reduction_indices=[1]))
#梯度下降
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
#初始化所有变量
init = tf.initialize_all_variables()
#在session中启动模型
sess = tf.Session()
sess.run(init)
#开始训练
for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys})
if i % 100 == 0:
print(i)
#验证
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels}))