逻辑回归实践

参考文章1参考文章2参考文章3
Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为了最大化方程,利用牛顿梯度上升求解方程参数。

优点:计算代价不高,易于理解和实现。
缺点:容易欠拟合,分类精度可能不高。
使用数据类型:数值型和标称型数据。

0x01. 引入似然函数

逻辑回归跟最大似然关系很大,那什么是最大似然呢?
最大似然就是:最大可能嘛~就是根据已知的数据来推断最大可能的参数,比如假设我们已知高中生的身高符合高斯分布,因此我们随机抽样100个学生的身高,由于是随机抽的,因此可以认为这些学生之间是没有关系的,是独立的,因此我同时抽到这100个学生的概率就是这100个样本的联合概率了:

参数θ相对于样本集X的似然函数
这个概率反映了,在概率密度函数的参数是θ时,得到X这组样本的概率。因为这里X是已知的,也就是说我抽取到的这100个人的身高可以测出来,也就是已知的了。而θ是未知了,则上面这个公式只有θ是未知数,所以它是θ的函数。这个函数放映的是在不同的参数θ取值下,取得当前这个样本集的可能性,因此称为参数θ相对于样本集X的似然函数(likehood function)。记为L(θ)

所以,我们就只需要找到一个参数θ,其对应的似然函数L(θ)最大,也就是说抽到这100个男生(的身高)概率最大。这个叫做θ的最大似然估计量,记为:

有时,可以看到L(θ)是连乘的,所以为了便于分析,还可以定义对数似然函数,将其变成连加的:

然后求导并取0,求出参数就是最佳的参数值。


0x02. 迁移之逻辑回归&最大似然

我们从里面抓3个球,2个黑球,1个白球。这时候,有人就直接得出了黑球67%,白球占比33%。这个时候,其实这个人使用了最大似然概率的思想,通俗来讲,当黑球是67%的占比的时候,我们抓3个球,出现2黑1白的概率最大。我们直接用公式来说明。
假设黑球占比为P,白球为1-P。于是我们要求解MAX(PP(1-P)),显而易见P=67%时是最有可能得到目前的这个结果的(求解方法:对方程求导,使导数为0的P值即为最优解)

对比逻辑回归是不是就是一个二分类的问题,是不是跟上面的黑白球分类问题很像?

假设我们有n个独立的训练样本{(x1, y1) ,(x2, y2),…, (xn, yn)},y={0, 1}。那每一个观察到的样本(xi, yi)出现的概率是:

不管y是0还是1,上面得到的数,都是(x, y)出现的概率。那我们的整个样本集,也就是n个独立的样本出现的似然函数为(因为每个样本都是独立的,所以n个样本出现的概率就是他们各自出现的概率相乘):
这里我们稍微变换下L(θ):取自然对数,然后化简,得到:
就知道了。注:有xi的时候,表示它是第i个样本,下面没有做区分了,相信你的眼睛是雪亮的),得到:

其中第三步到第四步使用了下面替换。
这时候为求最大值,对L(θ)对θ求导,得到:
然后我们令该导数为0,即可求出最优解。但是这个方程是无法解析求解(这里就不证明了)。最后问题变成了,求解参数使方程L最大化,求解参数的方法梯度上升法(原理这里不解释了,看详细的代码的计算方式应该更容易理解些)。根据这个转换公式
我们代入参数和特征,求P,也就是发生1的概率。
上面这个也就是常提及的sigmoid函数,俗称激活函数,最后用于分类(若P(y=1|x;Θ )大于0.5,则判定为1)。
这时候,用L(θ)对θ求导,得到:

然后我们令该导数为0,你会很失望的发现,它无法解析求解。不信你就去尝试一下。所以没办法了,只能借助高大上的迭代来搞定了。这里选用了经典的梯度下降算法

0x03. 优化求解 (link)

梯度下降
Gradient descent 又叫 steepest descent,是利用一阶的梯度信息找到函数局部最优解的一种方法,也是机器学习里面最简单最常用的一种优化方法。它的思想很简单,和我开篇说的那样,要找最小值,我只需要每一步都往下走(也就是每一步都可以让代价函数小一点),然后不断的走,那肯定能走到最小值的地方,例如下图所示:


但,我同时也需要更快的到达最小值啊,怎么办呢?我们需要每一步都找下坡最快的地方,也就是每一步我走某个方向,都比走其他方法,要离最小值更近。而这个下坡最快的方向,就是梯度的负方向了。
对logistic Regression来说,梯度下降算法新鲜出炉,如下:

其中,参数α叫学习率,就是每一步走多远,这个参数蛮关键的。如果设置的太多,那么很容易就在最优值附加徘徊,因为你步伐太大了。例如要从广州到上海,但是你的一步的距离就是广州到北京那么远,没有半步的说法,自己能迈那么大步,是幸运呢?还是不幸呢?事物总有两面性嘛,它带来的好处是能很快的从远离最优值的地方回到最优值附近,只是在最优值附近的时候,它有心无力了。但如果设置的太小,那收敛速度就太慢了,向蜗牛一样,虽然会落在最优的点,但是这速度如果是猴年马月,我们也没这耐心啊。所以有的改进就是在这个学习率这个地方下刀子的。我开始迭代是,学习率大,慢慢的接近最优值的时候,我的学习率变小就可以了。所谓采两者之精华啊!

梯度下降:

初始化回归系数为1
重复下面步骤直到收敛{
        计算整个数据集的梯度
        使用alpha x gradient来更新回归系数
}
返回回归系数值

随机梯度下降:

初始化回归系数为1
重复下面步骤直到收敛{
        对数据集中每个样本
        计算该样本的梯度
        使用alpha xgradient来更新回归系数
 }
返回回归系数值

改进的随机梯度下降:

初始化回归系数为1
重复下面步骤直到收敛{
       对随机遍历的数据集中的每个样本
       随着迭代的逐渐进行,减小alpha的值
       计算该样本的梯度
       使用alpha x gradient来更新回归系数
    }
返回回归系数值

0x04. 另一种解释 (link)

其实为某种形式的回归建立数学模型并不是一件容易的事情,经过先烈的曲折探索,得出了一个神奇的公式,称为logit公式:

诶?看似简洁,然而有什么用呢?里面既没有X也没有y呀。。。

先等等,还记得深度学习中经常加在神经网络的顶层来求后验概率P(y=j|X)的softmax函数吗?对就是下面这个熟悉的函数:

对于我们的二分类问题来说,有P(y=0|X)+P(y=1|X)=1,那么如果我们令logit公式中的Q=P(y=0|X)呢?然后P(y=0|X)用softmax函数表示呢?是不是突然被下面推导的过程和结果惊呆了!!!:

而xTΔw的值不就是反映感知机模型的输出嘛!(即xTΔw>0则预测类别为正,xTΔw<0则预测类别为负)

我们再把xTΔw整理的好看一点,变成更正常的形式:w·x+b。然后就可以得到下面的结论!!!:

这就是我们前面苦苦寻找的逻辑回归模型!看,随机变量X与随机变量Y的关系竟然直接纳入了一个模型下面!也就是说后验概率直接用随机变量X表示了出来!而不是像贝叶斯定理一样间接表示后验概率。

有了上面直接表示的后验概率,于是建立似然函数,通过极大似然估计来确定模型的参数。因此设:

似然函数就表示为

对数似然函数即:

也就是本文的“浅入”环节的损失函数啦,原来是正儿八经的一步步推出来的!剩下的就交给梯度下降法优化出模型参数吧!

from numpy import *
filename='...\\testSet.txt' #文件目录
def loadDataSet():   #读取数据(这里只有两个特征)
    dataMat = []
    labelMat = []
    fr = open(filename)
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])   #前面的1,表示方程的常量。比如两个特征X1,X2,共需要三个参数,W1+W2*X1+W3*X2
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):  #sigmoid函数
    return 1.0/(1+exp(-inX))

def gradAscent(dataMat, labelMat): #梯度上升求最优参数
    dataMatrix=mat(dataMat) #将读取的数据转换为矩阵
    classLabels=mat(labelMat).transpose() #将读取的数据转换为矩阵
    m,n = shape(dataMatrix)
    alpha = 0.001  #设置梯度的阀值,该值越大梯度上升幅度越大
    maxCycles = 500 #设置迭代的次数,一般看实际数据进行设定,有些可能200次就够了
    weights = ones((n,1)) #设置初始的参数,并都赋默认值为1。注意这里权重以矩阵形式表示三个参数。
    for k in range(maxCycles):
        h = sigmoid(dataMatrix*weights)
        error = (classLabels - h)     #求导后差值
        weights = weights + alpha * dataMatrix.transpose()* error #迭代更新权重
    return weights

def stocGradAscent0(dataMat, labelMat):  #随机梯度上升,当数据量比较大时,每次迭代都选择全量数据进行计算,计算量会非常大。所以采用每次迭代中一次只选择其中的一行数据进行更新权重。
    dataMatrix=mat(dataMat)
    classLabels=labelMat
    m,n=shape(dataMatrix)
    alpha=0.01
    maxCycles = 500
    weights=ones((n,1))
    for k in range(maxCycles):
        for i in range(m): #遍历计算每一行
            h = sigmoid(sum(dataMatrix[i] * weights))
            error = classLabels[i] - h
            weights = weights + alpha * error * dataMatrix[i].transpose()
    return weights

def stocGradAscent1(dataMat, labelMat): #改进版随机梯度上升,在每次迭代中随机选择样本来更新权重,并且随迭代次数增加,权重变化越小。
    dataMatrix=mat(dataMat)
    classLabels=labelMat
    m,n=shape(dataMatrix)
    weights=ones((n,1))
    maxCycles=500
    for j in range(maxCycles): #迭代
        dataIndex=[i for i in range(m)]
        for i in range(m): #随机遍历每一行
            alpha=4/(1+j+i)+0.0001  #随迭代次数增加,权重变化越小。
            randIndex=int(random.uniform(0,len(dataIndex)))  #随机抽样
            h=sigmoid(sum(dataMatrix[randIndex]*weights))
            error=classLabels[randIndex]-h
            weights=weights+alpha*error*dataMatrix[randIndex].transpose()
            del(dataIndex[randIndex]) #去除已经抽取的样本
    return weights

def plotBestFit(weights):  #画出最终分类的图
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0]
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1])
            ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1])
            ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()

def main():
    dataMat, labelMat = loadDataSet()
    weights=gradAscent(dataMat, labelMat).getA()
    plotBestFit(weights)

if __name__=='__main__':
    main()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,000评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,745评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,561评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,782评论 1 298
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,798评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,394评论 1 310
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,952评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,852评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,409评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,483评论 3 341
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,615评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,303评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,979评论 3 334
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,470评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,571评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,041评论 3 377
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,630评论 2 359

推荐阅读更多精彩内容