计算机视觉入门参考资料

Time: 2019-07-26

数学入门

  1. 线性代数
  2. 奇异值分解
  3. 模式识别入门
  4. PCA
  5. Kalman滤波
  6. 傅里叶转换
  7. 小波

图形处理入门

  1. Online Course offered by Duke University on Coursera
  2. Digital Image Processing by Gonzalez and Woods

进阶

  1. LDA
  2. 概率, 贝叶斯规则, 最大似然, MAP
  3. 混合与EM算法
  4. 统计学习入门
  5. SVM
  6. 基因算法
  7. 隐马尔可夫模型
  8. 贝叶斯网络

实用算法

一些经典的算法

  1. SIFT: classic descriptor for general-purpose vision
  2. HOG: well-known descriptor that is particularly good for human detection
  3. Viola-Jones: great face detector
  4. Shape Contexts
  5. Deformable Part Models

必读书单

入门级

  1. Computer Vision: Algorithms and Applications

  2. Computer Vision : A Modern Approach By David A. Forsyth, Jean Ponce

  3. Multiple View Geometry in Computer VisionBy Richard Hartley, Andrew Zisserman

进阶

  1. Michael Nielsen’s “Neural Networks and Deep Learning” online book; it’s a really great, gentle introduction: Neural networks and deep learning

  2. Deep Learning book by Ian Goodfellow, Yoshua Bengio, and Aaron Courville

优秀的TED讲座

  1. Fei-Fei Li: How we’re teaching computers to understand pictures

  2. Blaise Agüera y Arcas: How PhotoSynth can connect the world’s images

  3. Chieko Asakawa: How new technology helps blind people explore the world

  4. Jennifer Healey: If cars could talk, accidents might be avoidable

  5. Golan Levin: Art that looks back at you

  6. Paul Debevec: Animating a photo-real digital face

  7. Golan Levin: Software (as) art

在线课程

入门级

  1. Udacity : Introduction to Computer Vision
  2. Stanford’s CS231n: Convolutional Neural Networks for Visual Recognition
  3. University of Central Florida — Prof. Mubarak Shah’s Video lectures
  4. Apply all your knowledge on concepts and algorithms gained from aforementioned resources to solve a few assignments and do a projecton your own.

进阶 — 深度学习方向

  1. Geoff Hinton’s Neural Net lectures on Coursera
  2. Stanford course: Deep Learning for Natural Language Processing
  3. Stanford course: Convolutional Neural Networks for Visual Recognition

讲座课程

  1. Deep Learning in Computer Vision (Prof. Sanja Fidler)
  2. Advanced Computer Vision (Prof. James Hays)

项目

a. Microsoft computer scientists and researchers are working to “solve” cancer

b. Project Tokyo — deliver AI-enabled prototypes that augment awareness of social, physical and textual environment for people who are blind or have vision impairments.

c. Teaching machines to predict the future

END.

参考

https://medium.com/readers-writers-digest/beginners-guide-to-computer-vision-23606224b720

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容