点击率预测综述-摘记

lr模型优缺点

lr 的优点很明确,首先 sigmoid 函数的取值范围是 0-1,刚好可以解释为点击概率,而输入的范围却可以很宽广。所以 lr 是历史最悠久、使用最广泛的点击率、转化率模型。


LR.jpg

(1)使用 lr 需要注意的几个事项,首先是训练算法;如果使用离线训练算法,有比较多的选择,比如 sgd、lbfgs、owlq、tron 等等;其中 sgd 是一种非常通用的优化算法,但个人认为理论研究模型的时候可以用 sgd 快速理解,但实际业务中往往不是最佳选择,尤其是存在其他备选项的情况下;原因可以给一个直观的解释,从 sigmoid 函数图像可以看出来,在 x 大于 4 或者小于-4 以后,函数的取值已经接近于 1 或者 0 了,此时函数的梯度方向接近平行,说明梯度很小,那单个样本对模型参数的贡献也会接近于 0,所以 sgd 的收敛速度越来越慢。这种收敛速度是敏感的,如果你跑一个模型几个小时收敛不了,和另一个算法几分钟就收敛了,那时间的量变就会带来模型性能指标的质变的。(2)lr 模型最需要注意的是特征的呈现方式,从 sigmoid 的解析式可以看到** lr 其实是广义线性模型的一种(GLM),所以 lr 既不能很好的处理连续型特征,也无法对特征进行组合。相反对于 categorical feature 反而处理的很好。**因此,使用 lr 模型的时候往往伴随着大量特征工程方面的工作,包括但不限于连续特征离散化、特征组合等。

特征设计

【a】一个是获取外部关联信息,比如对于新广告,我们要预测点击率的话,因为没有历史数据,我们可以从层次结构来获取一些信息,比如这个广告的 publisher 下面其他广告的点击情况,这个广告的落地页的 url 种的层次关系,比如 xx.com/food/x.html 这类 url,我们是否可以对 food 做一个聚合,看看这类落地页对应的广告的数据情况,作为我们新广告的特征。还有一种技巧,将广告相关的文本,或者广告购买的关键词列表,丢到搜索引擎上去跑一下,取返回的 top10 页面聚合以后做一个分类(类别体系可以提前设计),然后根据关键词列表在不同类别上分布形成的信息熵作为一个 feature,放到 lr 里。在 [1]中使用这种方法得到了一定的提升。【b】另一个套路是使用数据不同方面的信息,这个策略更加隐晦。举个例子,我们可以根据用户的资讯阅读历史计算一个兴趣画像,但是这个画像我们可以分成几个画像,比如拿一周的历史算一个,一个月的历史算一个,然后通过实践 decay 算一个历史全量的。这样长中短期分开的画像可以作为独立的特征放到模型中去。另一个例子是 cf 论文中一个很有意思的做法,在 netflix 的数据集里,user-item 矩阵嵌入了一个隐藏信息是 user-打分 item 的对应关系,所以我们可以从 user-rating 矩阵里提取一个二元取值的 user-item 关联矩阵,如果 u 对 i 打分了,则这个矩阵对应 ui 的位置为 1,否则为 0.把这个矩阵作为一个 implicit feedback 加入到 cf 里,会有进一步的效果提升,这就是数据信息的不同 facet。

评估指标

AUC 指标的不足之处有两点,一是只反映了模型的整体性能,看不出在不同点击率区间上的误差情况;二是只反映了排序能力,没有反映预测精度。

MSE可以衡量预测的精度,该指标不仅可以用来调参,也可以在参数选定以后来分区间看模型的拟合程度。缺点是区分度的问题,很有可能 MSE 的很小的提升,对线上的效果,比如 F 值会有较大的变化,因此在业务优化的时候还可以参考其他更有区分度的指标。

RIG 指标不仅和模型的质量有关,还和数据集的分布情况有关;因此千万注意不可以使用 RIG 来对比不同数据集上生成的模型,但可以用来对比相同数据集上不同模型的质量差异。

点击率模型

BOPR:该算法的基本思想是参数 w 是一个先验分布为正态分布的分布,参数为 u、ó;在贝叶斯框架下,每一个样本都是在修正对应的分布参数 u、ó。该模型的优点是基于贝叶斯模型,每个样本都可以对参数进行微调,可以做到在线学习,同时 online learning 带来了在线学习的能力,可以及时应对用户兴趣的变化。

BORP.jpg

GBDT+LR.jpg

GBDT+LR:一种解决特征组合问题的方案,基本思路是利用树模型的组合特性来自动做特征组合,具体一点是使用了 GBDT 的特征组合能力。每一个弱分类器只有一个叶子节点输出预测结果,当有n个弱分类器m个叶子节点时,每条训练数据会被转化成1*m的稀疏向量(n个1,m-n个0)。

FTRL

FM.jpg

FM:一种可以自有设置特征组合度数的回归算法。FM 的另一个优点是会算出每个 feature 对应的向量 v;这个向量可以看做对 feature 的一种 embeding。FM 的不足之处是在 dense 数据集情况下,反而可能表现不佳.

参考文献
https://cloud.tencent.com/developer/article/1005051
https://cloud.tencent.com/developer/article/1005052

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容