5种数据科学家必知的采样算法

原文链接:The 5 Sampling Algorithms every Data Scientist need to know

简单随机采样

import pandas as pd
df = pd.DataFrame({'val': range(0, 9999)})
sample_df = df.sample(100)
print('df size: %d\nsample df size: %d' %(df.shape[0], sample_df.shape[0]))
df size: 9999
sample df size: 100

分层采样

假设有1000名学生,其中300名是男生,700名是女生。如果从中抽取出100名,可以对1000名随机采样,也可以从男生中选30名,女生中选70名,这就是分层采样。

import numpy as np

def stratified_sampling(data, column, sample_rate):
    labels = np.unique(data[column])
    print(labels)
    sample_data = pd.DataFrame()
    for label in labels:
        data_with_label = data[data[column] == label]
        sample_num = int(round(data_with_label.shape[0] * sample_rate))
        sample_data_with_label = data_with_label.sample(sample_num)
        sample_data = sample_data.append(sample_data_with_label)
    return sample_data
        
gender = np.append(['male'] * 300, ['female'] * 700)
df = pd.DataFrame({'gender': gender, 'id': range(0, 1000)})

sample_df = stratified_sampling(df, 'gender', 0.1)
print('sample size: %d\nmale: %d\nfemale: %d' %(sample_df.shape[0]\
                                                , sample_df[sample_df['gender'] == 'male'].shape[0]\
                                                , sample_df[sample_df['gender'] == 'female'].shape[0]))
['female' 'male']
sample size: 100
male: 30
female: 70

水库采样

假设有一个未知长度的流数据,只能遍历一遍,如何从中等概率地选出n个元素

基本想法是维护一个n长的列表,在遍历流数据的过程中,以一定的概率将流数据中当前遍历到的元素添加到列表中,或者替换列表中已有的元素。

那么,问题就是,这个“一定的概率”需要是多少,才能保证每个选中的元素都是等概率的。

我们把问题简化一下,假设有一个长度为3的流数据,我们从中选择2个,那么每个元素被选中的概率都是2/3。采用如下的步骤:

  1. 将第1个元素放入列表元素放入列表
  2. 将第2个元素放入列表元素放入列表
  3. 对第3个元素,有2/3的概率被放入列表,并随机替换1或者2,有1/3的概率不被放进列表

第3个元素替换1的概率是1/3,替换2的概率也是1/3,这样,每个元素被选中的概率都是2/3。

import random
def generator(max):
    number = 1
    while number < max:
        number += 1
        yield number
# Create as stream generator
stream = generator(1000)
# Doing Reservoir Sampling from the stream
k=5
reservoir = []
for i, element in enumerate(stream):
    if i+1<= k:
        reservoir.append(element)
    else:
        probability = 1.0*k/(i+1)
        if random.random() < probability:
            # Select item in stream and remove one of the k items already selected
             reservoir[random.choice(range(0,k))] = element
print(reservoir)
[213, 563, 164, 752, 607]

降采样和过采样

在处理高度不平衡的数据集的时候,经常会用户重采样方法,重采样有降采样和过采样两种。降采样是从样本多的类别中删除样本,过采样是向样本少的类别中添加样本。

image.png
from sklearn.datasets import make_classification
# create a classifcation dataset
X, y = make_classification(
    n_classes=2, class_sep=1.5, weights=[0.99, 0.01],
    n_informative=3, n_redundant=1, flip_y=0,
    n_features=20, n_clusters_per_class=1,
    n_samples=1000, random_state=10
)
X = pd.DataFrame(X)
X['target'] = y

num_0 = len(X[X['target']==0])
num_1 = len(X[X['target']==1])
print(num_0,num_1)

# random undersample
undersampled_data = pd.concat([ X[X['target']==0].sample(num_1) , X[X['target']==1] ])
print(len(undersampled_data))

# random oversample
oversampled_data = pd.concat([ X[X['target']==0] , X[X['target']==1].sample(num_0, replace=True) ])
print(len(oversampled_data))

(990, 10)
20
1980

使用 imbalanced-learn 进行降采样和过采样

imbalanced-learn(imblearn)是一个处理非平衡数据集的Python包。

a. 使用 Tomek Links 进行降采样

Tomek Links 是一组从属于不同类别的相邻样本对。我们可以将这些相邻的样本对都删除,来为分类器提供一个更清晰的分类边界。

image.png
from imblearn.under_sampling import TomekLinks

tl = TomekLinks(return_indices=True, ratio='majority')
X_tl, y_tl, id_tl = tl.fit_sample(X, y)

b. 使用 SMOTE 进行过采样

SMOTE (Synthetic Minority Oversampling Technique) 对样本少的类别合成样本,这些合成的样本位于已有样本的临近位置上。

image.png
from imblearn.over_sampling import SMOTE

smote = SMOTE(ratio='minority')
X_sm, y_sm = smote.fit_sample(X, y)

imblearn 包中还有其他的算法,比如:

  • 降采样:Cluster Centroids, NearMiss 等
  • 过采样:ADASYN, bSMOTE 等
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356

推荐阅读更多精彩内容