1.常规性能调优
(1)最优资源配置:
Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。
资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示:
/usr/opt/modules/spark/bin/spark-submit \
--class com.cc.spark.Analysis \
--num-executors 80 \
--driver-memory 6g \
--executor-memory 6g \
--executor-cores 3 \
/usr/opt/modules/spark/jar/spark.jar \
调节原则:尽量将任务分配的资源调节到可以使用的资源的最大限度。
对于具体资源的分配,我们分别讨论Spark的两种Cluster运行模式:
第一种是Spark Standalone模式,你在提交任务前,一定知道或者可以从运维部门获取到你可以使用的资源情况,在编写submit脚本的时候,就根据可用的资源情况进行资源的分配,比如说集群有15台机器,每台机器为8G内存,2个CPU core,那么就指定15个Executor,每个Executor分配8G内存,2个CPU core。
第二种是Spark Yarn模式,由于Yarn使用资源队列进行资源的分配和调度,在表写submit脚本的时候,就根据Spark作业要提交到的资源队列,进行资源的分配,比如资源队列有400G内存,100个CPU core,那么指定50个Executor,每个Executor分配8G内存,2个CPU core。
补充:生产环境Spark submit脚本配置
/usr/local/spark/bin/spark-submit \
--class com.atguigu.spark.WordCount \
--num-executors 80 \
--driver-memory 6g \
--executor-memory 6g \
--executor-cores 3 \
--master yarn-cluster \
--queue root.default \
--conf spark.yarn.executor.memoryOverhead=2048 \
--conf spark.core.connection.ack.wait.timeout=300 \
/usr/local/spark/spark.jar
(3)并行度调节
Spark作业中的并行度指各个stage的task的数量。
如果并行度设置不合理而导致并行度过低,会导致资源的极大浪费,例如,20个Executor,每个Executor分配3个CPU core,而Spark作业有40个task,这样每个Executor分配到的task个数是2个,这就使得每个Executor有一个CPU core空闲,导致资源的浪费。
理想的并行度设置,应该是让并行度与资源相匹配,简单来说就是在资源允许的前提下,并行度要设置的尽可能大,达到可以充分利用集群资源。合理的设置并行度,可以提升整个Spark作业的性能和运行速度。
Spark官方推荐,task数量应该设置为Spark作业总CPU core数量的2~3倍。
之所以没有推荐task数量与CPU core总数相等,是因为task的执行时间不同,有的task执行速度快而有的task执行速度慢,如果task数量与CPU core总数相等,那么执行快的task执行完成后,会出现CPU core空闲的情况。如果task数量设置为CPU core总数的2~3倍,那么一个task执行完毕后,CPU core会立刻执行下一个task,降低了资源的浪费,同时提升了Spark作业运行的效率。
val conf = new SparkConf()
.set("spark.default.parallelism", "500")
(4)广播大变量
默认情况下,task中的算子中如果使用了外部的变量,每个task都会获取一份变量的复本,这就造成了内存的极大消耗。一方面,如果后续对RDD进行持久化,可能就无法将RDD数据存入内存,只能写入磁盘,磁盘IO将会严重消耗性能;另一方面,task在创建对象的时候,也许会发现堆内存无法存放新创建的对象,这就会导致频繁的GC,GC会导致工作线程停止,进而导致Spark暂停工作一段时间,严重影响Spark性能。
假设当前任务配置了20个Executor,指定500个task,有一个20M的变量被所有task共用,此时会在500个task中产生500个副本,耗费集群10G的内存,如果使用了广播变量, 那么每个Executor保存一个副本,一共消耗400M内存,内存消耗减少了5倍。
广播变量在每个Executor保存一个副本,此Executor的所有task共用此广播变量,这让变量产生的副本数量大大减少。
在初始阶段,广播变量只在Driver中有一份副本。task在运行的时候,想要使用广播变量中的数据,此时首先会在自己本地的Executor对应的BlockManager中尝试获取变量,如果本地没有,BlockManager就会从Driver或者其他节点的BlockManager上远程拉取变量的复本,并由本地的BlockManager进行管理;之后此Executor的所有task都会直接从本地的BlockManager中获取变量。
(2)Kryo序列化
默认情况下,Spark使用Java的序列化机制。Java的序列化机制使用方便,不需要额外的配置,在算子中使用的变量实现Serializable接口即可,但是,Java序列化机制的效率不高,序列化速度慢并且序列化后的数据所占用的空间依然较大。
Kryo序列化机制比Java序列化机制性能提高10倍左右,Spark之所以没有默认使用Kryo作为序列化类库,是因为它不支持所有对象的序列化,同时Kryo需要用户在使用前注册需要序列化的类型,不够方便,但从Spark 2.0.0版本开始,简单类型、简单类型数组、字符串类型的Shuffling RDDs 已经默认使用Kryo序列化方式了。
public class MyKryoRegistrator implements KryoRegistrator
{
@Override
public void registerClasses(Kryo kryo)
{
kryo.register(StartupReportLogs.class);
}
}
//创建SparkConf对象
val conf = new SparkConf().setMaster(…).setAppName(…)
//使用Kryo序列化库,如果要使用Java序列化库,需要把该行屏蔽掉
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
//在Kryo序列化库中注册自定义的类集合,如果要使用Java序列化库,需要把该行屏蔽掉
conf.set("spark.kryo.registrator", "atguigu.com.MyKryoRegistrator");
(6)调节本地化等待时长
Spark作业运行过程中,Driver会对每一个stage的task进行分配。根据Spark的task分配算法,Spark希望task能够运行在它要计算的数据算在的节点(数据本地化思想),这样就可以避免数据的网络传输。通常来说,task可能不会被分配到它处理的数据所在的节点,因为这些节点可用的资源可能已经用尽,此时,Spark会等待一段时间,默认3s,如果等待指定时间后仍然无法在指定节点运行,那么会自动降级,尝试将task分配到比较差的本地化级别所对应的节点上,比如将task分配到离它要计算的数据比较近的一个节点,然后进行计算,如果当前级别仍然不行,那么继续降级。
当task要处理的数据不在task所在节点上时,会发生数据的传输。task会通过所在节点的BlockManager获取数据,BlockManager发现数据不在本地时,户通过网络传输组件从数据所在节点的BlockManager处获取数据。
网络传输数据的情况是我们不愿意看到的,大量的网络传输会严重影响性能,因此,我们希望通过调节本地化等待时长,如果在等待时长这段时间内,目标节点处理完成了一部分task,那么当前的task将有机会得到执行,这样就能够改善Spark作业的整体性能。
在Spark项目开发阶段,可以使用client模式对程序进行测试,此时,可以在本地看到比较全的日志信息,日志信息中有明确的task数据本地化的级别,如果大部分都是PROCESS_LOCAL,那么就无需进行调节,但是如果发现很多的级别都是NODE_LOCAL、ANY,那么需要对本地化的等待时长进行调节,通过延长本地化等待时长,看看task的本地化级别有没有提升,并观察Spark作业的运行时间有没有缩短。
注意,过犹不及,不要将本地化等待时长延长地过长,导致因为大量的等待时长,使得Spark作业的运行时间反而增加了。
Spark本地化等待时长的设置如代码清单2-5所示:
val conf = new SparkConf()
.set("spark.locality.wait", "6")
2.算子调优
(1)mapPartitions
普通的map算子对RDD中的每一个元素进行操作,而mapPartitions算子对RDD中每一个分区进行操作。如果是普通的map算子,假设一个partition有1万条数据,那么map算子中的function要执行1万次,也就是对每个元素进行操作。
如果是mapPartition算子,由于一个task处理一个RDD的partition,那么一个task只会执行一次function,function一次接收所有的partition数据,效率比较高。
(2)foreachPartition优化数据库操作
在生产环境中,通常使用foreachPartition算子来完成数据库的写入,通过foreachPartition算子的特性,可以优化写数据库的性能。
如果使用foreach算子完成数据库的操作,由于foreach算子是遍历RDD的每条数据,因此,每条数据都会建立一个数据库连接,这是对资源的极大浪费,因此,对于写数据库操作,我们应当使用foreachPartition算子。
与mapPartitions算子非常相似,foreachPartition是将RDD的每个分区作为遍历对象,一次处理一个分区的数据,也就是说,如果涉及数据库的相关操作,一个分区的数据只需要创建一次数据库连接,如图2-5所示:
使用了foreachPartition算子后,可以获得以下的性能提升:
- 对于我们写的function函数,一次处理一整个分区的数据;
- 对于一个分区内的数据,创建唯一的数据库连接;
- 只需要向数据库发送一次SQL语句和多组参数;
在生产环境中,全部都会使用foreachPartition算子完成数据库操作。foreachPartition算子存在一个问题,与mapPartitions算子类似,如果一个分区的数据量特别大,可能会造成OOM,即内存溢出。
-
filter与coalesce的配合使用
在Spark任务中我们经常会使用filter算子完成RDD中数据的过滤,在任务初始阶段,从各个分区中加载到的数据量是相近的,但是一旦进过filter过滤后,每个分区的数据量有可能会存在较大差异,如图2-6所示: