数据结构—树的遍历

二叉树的四种遍历算法

二叉树示意图.png

遍历这棵二叉树无非有以下两种方式。
1、层次遍历
前面讲过,树是有层次的,拿上图来说,该二叉树的层次为 3。通过对树中各层的节点从左到右依次遍历,即可实现对正棵二叉树的遍历,此种方式称为层次遍历。如图:


image.png

2、普通遍历
其实,还有一种更普通的遍历二叉树的思想,即按照 "从上到下,从左到右" 的顺序遍历整棵二叉树。


image.png

普通遍历继续分为三种
1、先访问根结点,再遍历左右子树,称为“先序遍历”;
2、遍历左子树,之后访问根结点,然后遍历右子树,称为“中序遍历”;
3、遍历完左右子树,再访问根结点,称为“后序遍历”。

三种方式唯一的不同就是访问结点时机的不同,给出一个二叉树,首先需要搞清楚三种遍历方式下访问结点的顺序。


二叉树遍历示意图.png

图中,箭头线条的走势为遍历结点的过程:
先序遍历是只要线条走到该结点的左方位置时,就操作该结点。所以操作结点的顺序为:

1 2 4 5 3 6 7

中序遍历是当线条越过结点的左子树,到达该结点的正下方时,才操作该结点。所以操作结点的顺序为:

4 2 5 1 6 3 7

后序遍历是线条完全走过结点的左右子树,到达该结点的右方范围时,就开始操作该结点。所以操作结点的顺序为:

4 5 2 6 7 3 1

完整代码递归方式实现

#include <stdio.h>

//构造结点的结构体
typedef struct BiTNode{
    int data;//数据域
    struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
//初始化树的函数
void CreateBiTree(BiTree *T){
    *T=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->data=1;
    (*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode));

    (*T)->lchild->data=2;
    (*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->lchild->rchild->data=5;
    (*T)->lchild->rchild->lchild=NULL;
    (*T)->lchild->rchild->rchild=NULL;
    (*T)->rchild->data=3;
    (*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->rchild->lchild->data=6;
    (*T)->rchild->lchild->lchild=NULL;
    (*T)->rchild->lchild->rchild=NULL;
    (*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->rchild->rchild->data=7;
    (*T)->rchild->rchild->lchild=NULL;
    (*T)->rchild->rchild->rchild=NULL;
    (*T)->lchild->lchild->data=4;
    (*T)->lchild->lchild->lchild=NULL;
    (*T)->lchild->lchild->rchild=NULL;
}


//模拟操作结点元素的函数,输出结点本身的数值
void showElem(BiTNode* elem){
    printf("%d ",elem->data);
}
//先序遍历
void PreOrderTraverse(BiTree T){
    if (T) {
        showElem(T);//调用操作结点数据的函数方法
        PreOrderTraverse(T->lchild);//访问该结点的左孩子
        PreOrderTraverse(T->rchild);//访问该结点的右孩子
    }
    //如果结点为空,返回上一层
    return;
}
//中序遍历
void INOrderTraverse(BiTree T){
    if (T) {
        INOrderTraverse(T->lchild);//遍历左孩子
        showElem(T);//调用操作结点数据的函数方法
        INOrderTraverse(T->rchild);//遍历右孩子
    }
    //如果结点为空,返回上一层
    return;
}
//后序遍历
void PostOrderTraverse(BiTree T){
    if (T) {
        PostOrderTraverse(T->lchild);//遍历左孩子
        PostOrderTraverse(T->rchild);//遍历右孩子
        showElem(T);//调用操作结点数据的函数方法
    }
    //如果结点为空,返回上一层
    return;
}
int main() {
    BiTree Tree;
    CreateBiTree(&Tree);
    printf("前序遍历:");
    PreOrderTraverse(Tree);
    printf("\n中序遍历:");
    INOrderTraverse(Tree);
    printf("\n后序遍历:");
    PostOrderTraverse(Tree);
}

运行结果.png

完整代码非递归方式实现

#include <stdio.h>

int top=-1;//top变量时刻表示栈顶元素所在位置

//构造结点的结构体
typedef struct BiTNode{
    int data;//数据域
    struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;

//初始化树的函数
void CreateBiTree(BiTree *T){
    *T=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->data=1;
    (*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->lchild->data=2;
    (*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->lchild->rchild->data=5;
    (*T)->lchild->rchild->lchild=NULL;
    (*T)->lchild->rchild->rchild=NULL;
    (*T)->rchild->data=3;
    (*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->rchild->lchild->data=6;
    (*T)->rchild->lchild->lchild=NULL;
    (*T)->rchild->lchild->rchild=NULL;
    (*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->rchild->rchild->data=7;
    (*T)->rchild->rchild->lchild=NULL;
    (*T)->rchild->rchild->rchild=NULL;
    (*T)->lchild->lchild->data=4;
    (*T)->lchild->lchild->lchild=NULL;
    (*T)->lchild->lchild->rchild=NULL;
}
//前序和中序遍历使用的进栈函数
void push(BiTNode** a,BiTNode* elem){
    a[++top]=elem;
}
//弹栈函数
void pop( ){
    if (top==-1) {
        return ;
    }
    top--;
}
//模拟操作结点元素的函数,输出结点本身的数值
void showElem(BiTNode* elem){
    printf("%d ",elem->data);
}
//拿到栈顶元素
BiTNode* getTop(BiTNode**a){
    return a[top];
}
/*
先序遍历非递归算法
思路:从树的根结点出发,遍历左孩子的同时,先将每个结点的右孩子压栈。当遇到结点没有左孩子的时候,取栈顶的右孩子。重复以上过程。
*/
void PreOrderTraverse(BiTree Tree){
    BiTNode* a[20];//定义一个顺序栈
    BiTNode * p;//临时指针
    push(a, Tree);//根结点进栈
    while (top!=-1) {
        p=getTop(a);//取栈顶元素
        pop();//弹栈
        while (p) {
            showElem(p);//调用结点的操作函数
            //如果该结点有右孩子,右孩子进栈
            if (p->rchild) {
                push(a,p->rchild);
            }
            p=p->lchild;//一直指向根结点最后一个左孩子
        }
    }
}
/*
中序遍历非递归算法1
思路:从根结点开始,遍历左孩子同时压栈,当遍历结束,说明当前遍历的结点没有左孩子,从栈中取出来调用操作函数,然后访问该结点的右孩子,继续以上重复性的操作。
*/
void InOrderTraverse1(BiTree Tree){
    BiTNode* a[20];//定义一个顺序栈
    BiTNode * p;//临时指针
    push(a, Tree);//根结点进栈
    while (top!=-1) {//top!=-1说明栈内不为空,程序继续运行
        while ((p=getTop(a)) &&p){//取栈顶元素,且不能为NULL
            push(a, p->lchild);//将该结点的左孩子进栈,如果没有左孩子,NULL进栈
        }
        pop();//跳出循环,栈顶元素肯定为NULL,将NULL弹栈
        if (top!=-1) {
            p=getTop(a);//取栈顶元素
            pop();//栈顶元素弹栈
            showElem(p);
            push(a, p->rchild);//将p指向的结点的右孩子进栈
        }
    }
}
/*
中序遍历非递归算法2
思路:只需将每个结点的左子树压栈即可,右子树不需要压栈。当结点的左子树遍历完成后,只需要以栈顶结点的右孩子为根结点,继续循环遍历即可。
*/
void InOrderTraverse2(BiTree Tree){
    BiTNode* a[20];//定义一个顺序栈
    BiTNode * p;//临时指针
    p=Tree;
    //当p为NULL或者栈为空时,表明树遍历完成
    while (p || top!=-1) {
        //如果p不为NULL,将其压栈并遍历其左子树
        if (p) {
            push(a, p);
            p=p->lchild;
        }
        //如果p==NULL,表明左子树遍历完成,需要遍历上一层结点的右子树
        else{
            p=getTop(a);
            pop();
            showElem(p);
            p=p->rchild;
        }
    }
}
/*
后序遍历非递归算法
思路:后序遍历是在遍历完当前结点的左右孩子之后,才调用操作函数,所以需要在操作结点进栈时,为每个结点配备一个标志位。当遍历该结点的左孩子时,设置当前结点的标志位为 0,进栈;当要遍历该结点的右孩子时,设置当前结点的标志位为 1,进栈。当遍历完成,该结点弹栈时,查看该结点的标志位的值:如果是 0,表示该结点的右孩子还没有遍历;反之如果是 1,说明该结点的左右孩子都遍历完成,可以调用操作函数。
*/
typedef struct SNode{
    BiTree p;
    int tag;
}SNode;
//后序遍历使用的进栈函数
void postpush(SNode *a,SNode sdata){
    a[++top]=sdata;
}
//后序遍历函数
void PostOrderTraverse(BiTree Tree){
    SNode a[20];//定义一个顺序栈
    BiTNode * p;//临时指针
    int tag;
    SNode sdata;
    p=Tree;
    while (p||top!=-1) {
        while (p) {
            //为该结点入栈做准备
            sdata.p=p;
            sdata.tag=0;//由于遍历是左孩子,设置标志位为0
            postpush(a, sdata);//压栈
            p=p->lchild;//以该结点为根结点,遍历左孩子
        }
        sdata=a[top];//取栈顶元素
        pop();//栈顶元素弹栈
        p=sdata.p;
        tag=sdata.tag;
        //如果tag==0,说明该结点还没有遍历它的右孩子
        if (tag==0) {
            sdata.p=p;
            sdata.tag=1;
            postpush(a, sdata);//更改该结点的标志位,重新压栈
            p=p->rchild;//以该结点的右孩子为根结点,重复循环
        }
        //如果取出来的栈顶元素的tag==1,说明此结点左右子树都遍历完了,可以调用操作函数了
        else{
            showElem(p);
            p=NULL;
        }
    }
}
int main(){
    BiTree Tree;
    CreateBiTree(&Tree);
    printf("前序遍历:");
    PreOrderTraverse(Tree);
    printf("\n中序遍历算法1:");
    InOrderTraverse1(Tree);
    printf("\n中序遍历算法2:");
    InOrderTraverse2(Tree);
    printf("\n后序遍历:");
    PostOrderTraverse(Tree);
}

image.png

7.7 二叉树层次遍历

按照二叉树中的层次从左到右依次遍历每层中的结点。具体的实现思路是:通过使用队列的数据结构,从树的根结点开始,依次将其左孩子和右孩子入队。而后每次队列中一个结点出队,都将其左孩子和右孩子入队,直到树中所有结点都出队,出队结点的先后顺序就是层次遍历的最终结果。


二叉树.png

实现层次遍历二叉树:

  • 首先,根结点 1 入队;
  • 根结点 1 出队,出队的同时,将左孩子 2 和右孩子 3 分别入队;
  • 队头结点 2 出队,出队的同时,将结点 2 的左孩子 4 和右孩子 5 依次入队;
  • 队头结点 3 出队,出队的同时,将结点 3 的左孩子 6 和右孩子 7 依次入队;
  • 不断地循环,直至队列内为空。
#include <stdio.h>

//初始化队头和队尾指针开始时都为0
int front=0,rear=0;

typedef struct BiTNode{
    int data;//数据域
    struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;

void CreateBiTree(BiTree *T){
    *T=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->data=1;
    (*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode));

    (*T)->lchild->data=2;
    (*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->lchild->rchild->data=5;
    (*T)->lchild->rchild->lchild=NULL;
    (*T)->lchild->rchild->rchild=NULL;

    (*T)->rchild->data=3;
    (*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->rchild->lchild->data=6;
    (*T)->rchild->lchild->lchild=NULL;
    (*T)->rchild->lchild->rchild=NULL;

    (*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->rchild->rchild->data=7;
    (*T)->rchild->rchild->lchild=NULL;
    (*T)->rchild->rchild->rchild=NULL;

    (*T)->lchild->lchild->data=4;
    (*T)->lchild->lchild->lchild=NULL;
    (*T)->lchild->lchild->rchild=NULL;
}
//入队函数
void EnQueue(BiTree *a,BiTree node){
    a[rear++]=node;
}
//出队函数
BiTNode* DeQueue(BiTNode** a){
    return a[front++];
}
//输出函数
void displayNode(BiTree node){
    printf("%d ",node->data);
}
int main() {
    BiTree tree;
    //初始化二叉树
    CreateBiTree(&tree);
    BiTNode * p;
    //采用顺序队列,初始化创建队列数组
    BiTree a[20];
    //根结点入队
    EnQueue(a, tree);
    //当队头和队尾相等时,表示队列为空
    while(front<rear) {
        //队头结点出队
        p=DeQueue(a);
        displayNode(p);
        //将队头结点的左右孩子依次入队
        if (p->lchild!=NULL) {
            EnQueue(a, p->lchild);
        }
        if (p->rchild!=NULL) {
            EnQueue(a, p->rchild);
        }
    }
    return 0;
}

运行结果.png

7.8 回溯法与树的遍历

回溯VS递归很多人认为回溯和递归是一样的,其实不然。在回溯法中可以看到有递归的身影,但是两者是有区别的。

回溯法从问题本身出发,寻找可能实现的所有情况。和穷举法的思想相近,不同在于穷举法是将所有的情况都列举出来以后再一一筛选,而回溯法在列举过程如果发现当前情况根本不可能存在,就停止后续的所有工作,返回上一步进行新的尝试。

递归是从问题的结果出发,例如求 n!,要想知道 n!的结果,就需要知道 n(n-1)! 的结果,而要想知道 (n-1)! 结果,就需要提前知道 (n-1)(n-2)!。这样不断地向自己提问,不断地调用自己的思想就是递归。

回溯和递归唯一的联系就是,回溯法可以用递归思想实现。

使用回溯法解决问题的过程,实际上是建立一棵“状态树”的过程。例如,在解决列举集合{1,2,3}所有子集的问题中,对于每个元素,都有两种状态,取还是舍,所以构建的状态树为:


状态树.png

回溯法的求解过程实质上是先序遍历“状态树”的过程。树中每一个叶子结点,都有可能是问题的答案。图中的状态树是满二叉树,得到的叶子结点全部都是问题的解。

在某些情况下,回溯法解决问题的过程中创建的状态树并不都是满二叉树,因为在试探的过程中,有时会发现此种情况下,再往下进行没有意义,所以会放弃这条死路,回溯到上一步。在树中的体现,就是在树的最后一层不是满的,即不是满二叉树,需要自己判断哪些叶子结点代表的是正确的结果。

例如,在解决列举集合 {1,2,3} 中所有子集的问题中,就可以使用回溯法找出子集。

#include <stdio.h>

//设置一个数组,数组的下标表示集合中的元素
int set[5];

//i代表数组下标,n表示集合中最大的元素值
void powerSet(int i,int n){
    //当i>n时,说明集合中所有的元素都做了选择,开始判断
    if (i>n) {
        int j;
        for (j=1; j<=n; j++) {
            //如果树组中存放的是 1,说明在当初尝试时,选择取该元素,即对应的数组下标,所以,可以输出
            if (set[j]==1) {
                printf("%d ",j);
            }
        }
        printf("\n");
    }else{
        //如果选择要该元素,对应的数组单元中赋值为1;反之,赋值为0。然后继续向下探索
        set[i]=1;
        powerSet(i+1, n);
        set[i]=0;
        powerSet(i+1, n);
    }
}
int main() {
    int n=3, i;
    for (i=0; i<5; i++) {
        set[i]=0;
    }
    powerSet(1, n);
    return 0;
}

运行结果.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容

  • 一些概念 数据结构就是研究数据的逻辑结构和物理结构以及它们之间相互关系,并对这种结构定义相应的运算,而且确保经过这...
    Winterfell_Z阅读 5,741评论 0 13
  • 1)这本书为什么值得看: Python语言描述,如果学的Python用这本书学数据结构更合适 2016年出版,内容...
    孙怀阔阅读 12,463评论 0 15
  • 数据结构和算法--二叉树的实现 几种二叉树 1、二叉树 和普通的树相比,二叉树有如下特点: 每个结点最多只有两棵子...
    sunhaiyu阅读 6,446评论 0 14
  • 目录 1、什么是树 2、相关术语 3、二叉树 3.1、二叉树的类型 3.2、二叉树的性质 3.3、二叉树的结构 3...
    我哈啊哈啊哈阅读 2,541评论 0 10
  • 一. 树的定义 树是一种非线性的数据结构。它是n个结点的有限集合,一棵非空树具有以下的特点:(1)有且只有一个称为...
    yzbkaka阅读 428评论 0 1