二叉树的四种遍历算法
遍历这棵二叉树无非有以下两种方式。
1、层次遍历
前面讲过,树是有层次的,拿上图来说,该二叉树的层次为 3。通过对树中各层的节点从左到右依次遍历,即可实现对正棵二叉树的遍历,此种方式称为层次遍历。如图:
2、普通遍历
其实,还有一种更普通的遍历二叉树的思想,即按照 "从上到下,从左到右" 的顺序遍历整棵二叉树。
普通遍历继续分为三种
1、先访问根结点,再遍历左右子树,称为“先序遍历”;
2、遍历左子树,之后访问根结点,然后遍历右子树,称为“中序遍历”;
3、遍历完左右子树,再访问根结点,称为“后序遍历”。
三种方式唯一的不同就是访问结点时机的不同,给出一个二叉树,首先需要搞清楚三种遍历方式下访问结点的顺序。
图中,箭头线条的走势为遍历结点的过程:
先序遍历是只要线条走到该结点的左方位置时,就操作该结点。所以操作结点的顺序为:
1 2 4 5 3 6 7
中序遍历是当线条越过结点的左子树,到达该结点的正下方时,才操作该结点。所以操作结点的顺序为:
4 2 5 1 6 3 7
后序遍历是线条完全走过结点的左右子树,到达该结点的右方范围时,就开始操作该结点。所以操作结点的顺序为:
4 5 2 6 7 3 1
完整代码递归方式实现
#include <stdio.h>
//构造结点的结构体
typedef struct BiTNode{
int data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
//初始化树的函数
void CreateBiTree(BiTree *T){
*T=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->data=1;
(*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->data=2;
(*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild->data=5;
(*T)->lchild->rchild->lchild=NULL;
(*T)->lchild->rchild->rchild=NULL;
(*T)->rchild->data=3;
(*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->lchild->data=6;
(*T)->rchild->lchild->lchild=NULL;
(*T)->rchild->lchild->rchild=NULL;
(*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->rchild->data=7;
(*T)->rchild->rchild->lchild=NULL;
(*T)->rchild->rchild->rchild=NULL;
(*T)->lchild->lchild->data=4;
(*T)->lchild->lchild->lchild=NULL;
(*T)->lchild->lchild->rchild=NULL;
}
//模拟操作结点元素的函数,输出结点本身的数值
void showElem(BiTNode* elem){
printf("%d ",elem->data);
}
//先序遍历
void PreOrderTraverse(BiTree T){
if (T) {
showElem(T);//调用操作结点数据的函数方法
PreOrderTraverse(T->lchild);//访问该结点的左孩子
PreOrderTraverse(T->rchild);//访问该结点的右孩子
}
//如果结点为空,返回上一层
return;
}
//中序遍历
void INOrderTraverse(BiTree T){
if (T) {
INOrderTraverse(T->lchild);//遍历左孩子
showElem(T);//调用操作结点数据的函数方法
INOrderTraverse(T->rchild);//遍历右孩子
}
//如果结点为空,返回上一层
return;
}
//后序遍历
void PostOrderTraverse(BiTree T){
if (T) {
PostOrderTraverse(T->lchild);//遍历左孩子
PostOrderTraverse(T->rchild);//遍历右孩子
showElem(T);//调用操作结点数据的函数方法
}
//如果结点为空,返回上一层
return;
}
int main() {
BiTree Tree;
CreateBiTree(&Tree);
printf("前序遍历:");
PreOrderTraverse(Tree);
printf("\n中序遍历:");
INOrderTraverse(Tree);
printf("\n后序遍历:");
PostOrderTraverse(Tree);
}
完整代码非递归方式实现
#include <stdio.h>
int top=-1;//top变量时刻表示栈顶元素所在位置
//构造结点的结构体
typedef struct BiTNode{
int data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
//初始化树的函数
void CreateBiTree(BiTree *T){
*T=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->data=1;
(*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->data=2;
(*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild->data=5;
(*T)->lchild->rchild->lchild=NULL;
(*T)->lchild->rchild->rchild=NULL;
(*T)->rchild->data=3;
(*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->lchild->data=6;
(*T)->rchild->lchild->lchild=NULL;
(*T)->rchild->lchild->rchild=NULL;
(*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->rchild->data=7;
(*T)->rchild->rchild->lchild=NULL;
(*T)->rchild->rchild->rchild=NULL;
(*T)->lchild->lchild->data=4;
(*T)->lchild->lchild->lchild=NULL;
(*T)->lchild->lchild->rchild=NULL;
}
//前序和中序遍历使用的进栈函数
void push(BiTNode** a,BiTNode* elem){
a[++top]=elem;
}
//弹栈函数
void pop( ){
if (top==-1) {
return ;
}
top--;
}
//模拟操作结点元素的函数,输出结点本身的数值
void showElem(BiTNode* elem){
printf("%d ",elem->data);
}
//拿到栈顶元素
BiTNode* getTop(BiTNode**a){
return a[top];
}
/*
先序遍历非递归算法
思路:从树的根结点出发,遍历左孩子的同时,先将每个结点的右孩子压栈。当遇到结点没有左孩子的时候,取栈顶的右孩子。重复以上过程。
*/
void PreOrderTraverse(BiTree Tree){
BiTNode* a[20];//定义一个顺序栈
BiTNode * p;//临时指针
push(a, Tree);//根结点进栈
while (top!=-1) {
p=getTop(a);//取栈顶元素
pop();//弹栈
while (p) {
showElem(p);//调用结点的操作函数
//如果该结点有右孩子,右孩子进栈
if (p->rchild) {
push(a,p->rchild);
}
p=p->lchild;//一直指向根结点最后一个左孩子
}
}
}
/*
中序遍历非递归算法1
思路:从根结点开始,遍历左孩子同时压栈,当遍历结束,说明当前遍历的结点没有左孩子,从栈中取出来调用操作函数,然后访问该结点的右孩子,继续以上重复性的操作。
*/
void InOrderTraverse1(BiTree Tree){
BiTNode* a[20];//定义一个顺序栈
BiTNode * p;//临时指针
push(a, Tree);//根结点进栈
while (top!=-1) {//top!=-1说明栈内不为空,程序继续运行
while ((p=getTop(a)) &&p){//取栈顶元素,且不能为NULL
push(a, p->lchild);//将该结点的左孩子进栈,如果没有左孩子,NULL进栈
}
pop();//跳出循环,栈顶元素肯定为NULL,将NULL弹栈
if (top!=-1) {
p=getTop(a);//取栈顶元素
pop();//栈顶元素弹栈
showElem(p);
push(a, p->rchild);//将p指向的结点的右孩子进栈
}
}
}
/*
中序遍历非递归算法2
思路:只需将每个结点的左子树压栈即可,右子树不需要压栈。当结点的左子树遍历完成后,只需要以栈顶结点的右孩子为根结点,继续循环遍历即可。
*/
void InOrderTraverse2(BiTree Tree){
BiTNode* a[20];//定义一个顺序栈
BiTNode * p;//临时指针
p=Tree;
//当p为NULL或者栈为空时,表明树遍历完成
while (p || top!=-1) {
//如果p不为NULL,将其压栈并遍历其左子树
if (p) {
push(a, p);
p=p->lchild;
}
//如果p==NULL,表明左子树遍历完成,需要遍历上一层结点的右子树
else{
p=getTop(a);
pop();
showElem(p);
p=p->rchild;
}
}
}
/*
后序遍历非递归算法
思路:后序遍历是在遍历完当前结点的左右孩子之后,才调用操作函数,所以需要在操作结点进栈时,为每个结点配备一个标志位。当遍历该结点的左孩子时,设置当前结点的标志位为 0,进栈;当要遍历该结点的右孩子时,设置当前结点的标志位为 1,进栈。当遍历完成,该结点弹栈时,查看该结点的标志位的值:如果是 0,表示该结点的右孩子还没有遍历;反之如果是 1,说明该结点的左右孩子都遍历完成,可以调用操作函数。
*/
typedef struct SNode{
BiTree p;
int tag;
}SNode;
//后序遍历使用的进栈函数
void postpush(SNode *a,SNode sdata){
a[++top]=sdata;
}
//后序遍历函数
void PostOrderTraverse(BiTree Tree){
SNode a[20];//定义一个顺序栈
BiTNode * p;//临时指针
int tag;
SNode sdata;
p=Tree;
while (p||top!=-1) {
while (p) {
//为该结点入栈做准备
sdata.p=p;
sdata.tag=0;//由于遍历是左孩子,设置标志位为0
postpush(a, sdata);//压栈
p=p->lchild;//以该结点为根结点,遍历左孩子
}
sdata=a[top];//取栈顶元素
pop();//栈顶元素弹栈
p=sdata.p;
tag=sdata.tag;
//如果tag==0,说明该结点还没有遍历它的右孩子
if (tag==0) {
sdata.p=p;
sdata.tag=1;
postpush(a, sdata);//更改该结点的标志位,重新压栈
p=p->rchild;//以该结点的右孩子为根结点,重复循环
}
//如果取出来的栈顶元素的tag==1,说明此结点左右子树都遍历完了,可以调用操作函数了
else{
showElem(p);
p=NULL;
}
}
}
int main(){
BiTree Tree;
CreateBiTree(&Tree);
printf("前序遍历:");
PreOrderTraverse(Tree);
printf("\n中序遍历算法1:");
InOrderTraverse1(Tree);
printf("\n中序遍历算法2:");
InOrderTraverse2(Tree);
printf("\n后序遍历:");
PostOrderTraverse(Tree);
}
7.7 二叉树层次遍历
按照二叉树中的层次从左到右依次遍历每层中的结点。具体的实现思路是:通过使用队列的数据结构,从树的根结点开始,依次将其左孩子和右孩子入队。而后每次队列中一个结点出队,都将其左孩子和右孩子入队,直到树中所有结点都出队,出队结点的先后顺序就是层次遍历的最终结果。
实现层次遍历二叉树:
- 首先,根结点 1 入队;
- 根结点 1 出队,出队的同时,将左孩子 2 和右孩子 3 分别入队;
- 队头结点 2 出队,出队的同时,将结点 2 的左孩子 4 和右孩子 5 依次入队;
- 队头结点 3 出队,出队的同时,将结点 3 的左孩子 6 和右孩子 7 依次入队;
- 不断地循环,直至队列内为空。
#include <stdio.h>
//初始化队头和队尾指针开始时都为0
int front=0,rear=0;
typedef struct BiTNode{
int data;//数据域
struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
void CreateBiTree(BiTree *T){
*T=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->data=1;
(*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->data=2;
(*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->lchild->rchild->data=5;
(*T)->lchild->rchild->lchild=NULL;
(*T)->lchild->rchild->rchild=NULL;
(*T)->rchild->data=3;
(*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->lchild->data=6;
(*T)->rchild->lchild->lchild=NULL;
(*T)->rchild->lchild->rchild=NULL;
(*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
(*T)->rchild->rchild->data=7;
(*T)->rchild->rchild->lchild=NULL;
(*T)->rchild->rchild->rchild=NULL;
(*T)->lchild->lchild->data=4;
(*T)->lchild->lchild->lchild=NULL;
(*T)->lchild->lchild->rchild=NULL;
}
//入队函数
void EnQueue(BiTree *a,BiTree node){
a[rear++]=node;
}
//出队函数
BiTNode* DeQueue(BiTNode** a){
return a[front++];
}
//输出函数
void displayNode(BiTree node){
printf("%d ",node->data);
}
int main() {
BiTree tree;
//初始化二叉树
CreateBiTree(&tree);
BiTNode * p;
//采用顺序队列,初始化创建队列数组
BiTree a[20];
//根结点入队
EnQueue(a, tree);
//当队头和队尾相等时,表示队列为空
while(front<rear) {
//队头结点出队
p=DeQueue(a);
displayNode(p);
//将队头结点的左右孩子依次入队
if (p->lchild!=NULL) {
EnQueue(a, p->lchild);
}
if (p->rchild!=NULL) {
EnQueue(a, p->rchild);
}
}
return 0;
}
7.8 回溯法与树的遍历
回溯VS递归很多人认为回溯和递归是一样的,其实不然。在回溯法中可以看到有递归的身影,但是两者是有区别的。
回溯法从问题本身出发,寻找可能实现的所有情况。和穷举法的思想相近,不同在于穷举法是将所有的情况都列举出来以后再一一筛选,而回溯法在列举过程如果发现当前情况根本不可能存在,就停止后续的所有工作,返回上一步进行新的尝试。
递归是从问题的结果出发,例如求 n!,要想知道 n!的结果,就需要知道 n(n-1)! 的结果,而要想知道 (n-1)! 结果,就需要提前知道 (n-1)(n-2)!。这样不断地向自己提问,不断地调用自己的思想就是递归。
回溯和递归唯一的联系就是,回溯法可以用递归思想实现。
使用回溯法解决问题的过程,实际上是建立一棵“状态树”的过程。例如,在解决列举集合{1,2,3}所有子集的问题中,对于每个元素,都有两种状态,取还是舍,所以构建的状态树为:
回溯法的求解过程实质上是先序遍历“状态树”的过程。树中每一个叶子结点,都有可能是问题的答案。图中的状态树是满二叉树,得到的叶子结点全部都是问题的解。
在某些情况下,回溯法解决问题的过程中创建的状态树并不都是满二叉树,因为在试探的过程中,有时会发现此种情况下,再往下进行没有意义,所以会放弃这条死路,回溯到上一步。在树中的体现,就是在树的最后一层不是满的,即不是满二叉树,需要自己判断哪些叶子结点代表的是正确的结果。
例如,在解决列举集合 {1,2,3} 中所有子集的问题中,就可以使用回溯法找出子集。
#include <stdio.h>
//设置一个数组,数组的下标表示集合中的元素
int set[5];
//i代表数组下标,n表示集合中最大的元素值
void powerSet(int i,int n){
//当i>n时,说明集合中所有的元素都做了选择,开始判断
if (i>n) {
int j;
for (j=1; j<=n; j++) {
//如果树组中存放的是 1,说明在当初尝试时,选择取该元素,即对应的数组下标,所以,可以输出
if (set[j]==1) {
printf("%d ",j);
}
}
printf("\n");
}else{
//如果选择要该元素,对应的数组单元中赋值为1;反之,赋值为0。然后继续向下探索
set[i]=1;
powerSet(i+1, n);
set[i]=0;
powerSet(i+1, n);
}
}
int main() {
int n=3, i;
for (i=0; i<5; i++) {
set[i]=0;
}
powerSet(1, n);
return 0;
}