redis与memcached常见问题汇总

两者的区别

Redis与memcached的选择

如果只是缓存String数据,推荐选择memcached,性能高,效率快。

其他情况,优先考虑redis。

Reids的好处

(1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)

(2)支持丰富数据类型,支持string,list,set,sorted set,hash

(3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行

(4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除

Redis常见使用场景

1.String

常用命令:set,get,decr,incr,mget等

String数据结构是简单的key-value类型,value其实不仅可以是String,也可以是数字。

常规key-value缓存应用;

举个例子:常规计数:微博数,粉丝数等。

2.Hash

常用命令: hget,hset,hgetall 等

Hash是一个string类型的field和value的映射表,hash特别适合用于存储对象。 比如我们可以Hash数据结构来存储用户信息,商品信息等等。

举个例子: 最近做的一个电商网站项目的首页就使用了redis的hash数据结构进行缓存,因为一个网站的首页访问量是最大的,所以通常网站的首页可以通过redis缓存来提高性能和并发量。

3.List

常用命令: lpush,rpush,lpop,rpop,lrange等

list就是链表,Redis list的应用场景非常多,也是Redis最重要的数据结构之一,比如微博的关注列表,粉丝列表,最新消息排行等功能都可以用Redis的list结构来实现。

Redis list的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。

4.Set

常用命令:sadd,spop,smembers,sunion 等

set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的。

当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。

举个例子:在微博应用中,可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。Redis可以非常方便的实现如共同关注、共同喜好、二度好友等功能。

5.Sorted set

常用命令: zadd,zrange,zrem,zcard等

和set相比,sorted set增加了一个权重参数score,使得集合中的元素能够按score进行有序排列。

举例: 在直播系统中,实时排行信息包含直播间在线用户列表,各种礼物排行榜,弹幕消息(可以理解为按消息维度的消息排行榜)等信息,适合使用Redis中的SortedSet结构进行存储。

Redis提供的淘汰策略

volatile-lru:从设置了过期时间的数据集中,选择最近最久未使用的数据释放;

allkeys-lru:从数据集中(包括设置过期时间以及未设置过期时间的数据集中),选择最近最久未使用的数据释放;

volatile-random:从设置了过期时间的数据集中,随机选择一个数据进行释放;

allkeys-random:从数据集中(包括了设置过期时间以及未设置过期时间)随机选择一个数据进行入释放;

volatile-ttl:从设置了过期时间的数据集中,选择马上就要过期的数据进行释放操作;

noeviction:不删除任意数据(但redis还会根据引用计数器进行释放),这时如果内存不够时,直接返回错误。

默认的内存策略是noeviction,在Redis中LRU算法是一个近似算法,默认情况下,Redis随机挑选5个键,并且从中选取一个最近最久未使用的key进行淘汰,在配置文件中可以通过maxmemory-samples的值来设置redis需要检查key的个数,但是栓查的越多,耗费的时间也就越久,但是结构越精确(也就是Redis从内存中淘汰的对象未使用的时间也就越久~),设置多少,综合权衡。

Redis的并发问题

Redis为单进程单线程模式,采用队列模式将并发访问变为串行访问。Redis本身没有锁的概念,Redis对于多个客户端连接并不存在竞争,但是在Jedis客户端对Redis进行并发访问时会发生连接超时、数据转换错误、阻塞、客户端关闭连接等问题,这些问题均是由于客户端连接混乱造成。对此有2种解决方法:

1.客户端角度,为保证每个客户端间正常有序与Redis进行通信,对连接进行池化,同时对客户端读写Redis操作采用内部锁synchronized。

2.服务器角度,利用setnx实现锁。SETNX 是SET if Not eXists的简写。

:对于第一种,需要应用程序自己处理资源的同步,可以使用的方法比较通俗,可以使用synchronized也可以使用lock;第二种需要用到Redis的setnx命令,但是需要注意一些问题。

Redis常见性能问题和解决方案

Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件

如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次

为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内

尽量避免在压力很大的主库上增加从库

:在redis按照master-slave使用时,其maxmeory应设置的比实际物理内存稍小一些,给slave output buffer留有足够的空间。

致敬下面参考地址的作者,向大佬学习。

参考:

原著:https://www.jianshu.com/p/ca92e6588662

手记:https://www.imooc.com/article/23549

深入理解Redis数据淘汰策略:https://blog.csdn.net/wtyvhreal/article/details/46390065

使用Redis SETNX 命令实现分布式锁:https://blog.csdn.net/lihao21/article/details/49104695

Redis内存回收:https://www.cnblogs.com/WJ5888/p/4371647.html

Redis 大量数据插入:http://www.redis.cn/topics/mass-insert.html

Redis 分区的优势、不足以及分区类型:http://www.redis.net.cn/tutorial/3524.html

redis的持久化和缓存机制:https://blog.csdn.net/tr1912/article/details/70197085

扩容:https://juejin.im/post/5ad54d76f265da23970759d3

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容