TensorFlow-Slim README翻译

英文版传送门

TensorFlow-Slim

TF-Slim是为了定义、训练和评估用tensorflow构建的复杂模型而设计的一个轻量级库。tf-slim中的组件可以自由的与原生tensorflow框架相结合,和其他框架一样,例如tf.contrib.learn.

Usage:

import tensorflow.contrib.slim as slim

Why TF-Slim?

TF-Slim是一个轻量级库让构建、训练和评估神经网络变得更简单。
1、允许用户用更简洁的代码构建模型,这是通过使用argument scoping和高阶的封装layers
variables来实现的。这些工具增加了代码的可读性和可维护性,减少了赋值-粘贴超参数和超参数微调时出现错误的可能性。
2、通过了常用的regularizers使模型变的简单。
3、一些经典模型(比如 VGG, AlexNet)已经在Slim中部署,传送门available。These can either be used as black boxes, or can be extended in various ways, e.g., by adding "multiple heads" to different internal layers.
4、Slim makes it easy to extend complex models, and to warm start training algorithms by using pieces of pre-existing model checkpoints.

What are the various components of TF-Slim?

TF-Slim是由一些相互独立设计的组件组成,主要包括以下几个点。

  • arg_scope: provides a new scope named arg_scope that allows a user to define default arguments for specific operations within that scope.
  • data: contains TF-slim's dataset definition, data providers, parallel_reader, and decoding utilities.
  • evaluation: contains routines for evaluating models.
  • layers: contains high level layers for building models using tensorflow.
  • learning: contains routines for training models.
  • losses: contains commonly used loss functions.
  • metrics: contains popular evaluation metrics.
  • nets: contains popular network definitions such as VGG and AlexNet models.
  • queues: provides a context manager for easily and safely starting and closing QueueRunners.
  • regularizers: contains weight regularizers.variables: provides convenience wrappers for variable creation and manipulation.

Defining Models

通过结合库中的variables、layers、scopes可以简洁的定义模型,详细定义如下。

Variables

在原生tensorflow中创建变量需要预定义一个值或者一个初始化器(例如,从一个高斯分布中进行随机采样)。此外,如果一个变量要在某个设备上创建,如GPU上,是需要显式设置的。为了减少创建变量的代码要求,TF-Slim提供了一系列封装函数,在variables.py中可以查看到,使调用者可以很轻易的创建变量。
比如创建一个权值变量,用truncated normal distribution初始化,用l2_loss正则化权值并且是在CPU上创建,只需要声明以下内容:

weights = slim.variable('weights',
                             shape=[10, 10, 3 , 3],
                             initializer=tf.truncated_normal_initializer(stddev=0.1),
                             regularizer=slim.l2_regularizer(0.05),
                             device='/CPU:0')

在原生tensorflow中,有两种类型的变量:常规变量和局部变量。大多数变量都是常规变量:一旦被创建,就可以保存到磁盘上用saver。而局部变量仅仅是在会话期间并且没有保存到磁盘上。
TF-Slim进一步定义了模型变量来区别不同类型的变量,模型变量就是指模型的参数。模型变量可以被训练和微调并且在评估和推断时从checkpoint文件中加载出来。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,509评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,806评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,875评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,441评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,488评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,365评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,190评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,062评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,500评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,706评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,834评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,559评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,167评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,779评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,912评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,958评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,779评论 2 354