02-基于贝叶斯决策理论的分类器

1 为什么使用贝叶斯决策理论的分类器

因为样本的统计方差以及测量传感器的噪声,设计分类器将未知类型的样本分类到最可能的类别中,我们的分类方法以特征值的统计概率为基础,我们现在的任务是定义什么是“最可能”。

如给定一个M类(\omega _{1} ,\omega _{2} ,...,\omega _{M}) 的分类任务和一个用特征向量X表示的未知样本,生成M个条件概率P(\omega _{i} |X),i=1,2,...,M;   有时也称为后验概率(Posteriori probabilities),也就是对于特征向量X,每一项都代表未知样本属性属于某一特定类\omega _{i} 的概率。用这些条件概率来量化“最大可能”,我们的分类器或计算这些向量的最大值,或等价的计算它们定义函数估计最大值,未知样本就被划分到计算结果最大的一类中。

2 贝叶斯决策理论

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容

  • 概述自然语言分类是指按照预先定义的主题类别,为文档集合中的每个文档确定一个类别。本文将介绍一个限定类别的自然语言分...
    Cer_ml阅读 2,140评论 1 9
  • 朴素贝叶斯称为“朴素”,是因为整个形式化过程只做最原始、最简单的假设。--基于贝叶斯决策理论的分类方法 贝叶斯决策...
    梦vctor阅读 570评论 0 0
  • 1先验概率:不考虑其他条件针对M个事件出现的可能性 2类条件概率密度函数:在已知某类别的特征空间中w条件下出现特征...
    sereny阅读 332评论 0 0
  • 悲伤像身后的影子,逆着光芒,如影随形,在那个我们察觉不到的角落。 或许不是我们察觉不到,而是不想让它阻挡我们接纳大...
    Miss苏朵儿阅读 653评论 0 2
  • 在风起云涌的战场上 炮弹和嘶吼声盖过了一切 一个战士他那扭曲的脸上 显出临死时的不安 马上冲锋号就要吹响了 只有他...
    答案在风中飞扬阅读 201评论 0 6