BlockingQueue重要接口

常用方法:

【放入数据】

offer(object):表示如果可能的话,将object加到BlockingQueue里,即如果BlockingQueue可以容纳,则返回true,否则返回false.(本方法不阻塞当前执行方法的线程)。

offer(E o, long timeout, TimeUnit unit):可以设定等待的时间,如果在指定的时间内,还不能往队列中加入BlockingQueue,则返回失败。

put(object):把object加到BlockingQueue里,如果BlockQueue没有空间,则调用此方法的线程阻塞。直到BlockingQueue里面有空间再继续。

【取出数据】

poll(time):取走BlockingQueue里排在首位的对象,若不能立即取出,则可以等time参数规定的时间,取不到时返回null。

poll(long timeout, TimeUnit unit):从BlockingQueue取出一个队首的对象,如果在指定时间内,队列一旦有数据可取,则立即返回队列中的数据。否则知道时间超时还没有数据可取,返回失败。

take():取走BlockingQueue里排在首位的对象,若BlockingQueue为空,阻断进入等待状态直到BlockingQueue有新的数据被加入。

drainTo():一次性从BlockingQueue获取所有可用的数据对象(还可以指定获取数据的个数),通过该方法,可以提升获取数据效率;不需要多次分批加锁或释放锁。


ArrayBlockingQueue--原文地址链接https://www.jianshu.com/p/9a652250e0d1

LinkedBlockingQueue--原文地址链接https://www.jianshu.com/p/cc2281b1a6bc

ArrayBlockingQueue由于其底层基于数组,并且在创建时指定存储的大小,在完成后就会立即在内存分配固定大小容量的数组元素,因此其存储通常有限,故其是一个“有界“的阻塞队列;而LinkedBlockingQueue可以由用户指定最大存储容量,也可以无需指定,如果不指定则最大存储容量将是Integer.MAX_VALUE,即可以看作是一个“无界”的阻塞队列,由于其节点的创建都是动态创建,并且在节点出队列后可以被GC所回收,因此其具有灵活的伸缩性。但是由于ArrayBlockingQueue的有界性,因此其能够更好的对于性能进行预测,而LinkedBlockingQueue由于没有限制大小,当任务非常多的时候,不停地向队列中存储,就有可能导致内存溢出的情况发生。

其次,ArrayBlockingQueue中在入队列和出队列操作过程中,使用的是同一个lock,所以即使在多核CPU的情况下,其读取和操作的都无法做到并行,而LinkedBlockingQueue的读取和插入操作所使用的锁是两个不同的lock,它们之间的操作互相不受干扰,因此两种操作可以并行完成,故LinkedBlockingQueue的吞吐量要高于ArrayBlockingQueue

JDK中选用LinkedBlockingQueue作为阻塞队列的原因就在于其无界性。因为线程大小固定的线程池,其线程的数量是不具备伸缩性的,当任务非常繁忙的时候,就势必会导致所有的线程都处于工作状态,如果使用一个有界的阻塞队列来进行处理,那么就非常有可能很快导致队列满的情况发生,从而导致任务无法提交而抛出RejectedExecutionException,而使用无界队列由于其良好的存储容量的伸缩性,可以很好的去缓冲任务繁忙情况下场景,即使任务非常多,也可以进行动态扩容,当任务被处理完成之后,队列中的节点也会被随之被GC回收,非常灵活。

原文地址链接:https://www.jianshu.com/p/cc2281b1a6bc

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,185评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,652评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,524评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,339评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,387评论 6 391
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,287评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,130评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,985评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,420评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,617评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,779评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,477评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,088评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,716评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,857评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,876评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,700评论 2 354