[SPARK-19680] Offsets out of range with no configured reset policy for partitions

在我司的风电大数据项目中,出现了一个报错

比如
Job aborted due to stage failure: Task 2 in stage 111.0 failed 4 times, most recent failure: Lost task 2.3 in stage 111.0 (TID 1270, 194.232.55.23, executor 2): org.apache.kafka.clients.consumer.OffsetOutOfRangeException: Offsets out of range with no configured reset policy for partitions: {winSink-2=161803385}

我司为了实现Exactly Once的语义,采取了自行保管offset的方式。即Spark App提交后,从上一次任务结束的位置开始继续读取消息。但是这样做会遇到问题,即上述的OffsetOutOfRangeException,通常是因为Kafka的retention expiration造成的。

在Kafka的配置中,需要关注这样一条

public static final String AUTO_OFFSET_RESET_CONFIG = "auto.offset.reset";
public static final String AUTO_OFFSET_RESET_DOC = "What to do when there is no initial offset in Kafka or if the current offset does not exist any more on the server (e.g. because that data has been deleted): <ul><li>earliest: automatically reset the offset to the earliest offset<li>latest: automatically reset the offset to the latest offset</li><li>none: throw exception to the consumer if no previous offset is found for the consumer's group</li><li>anything else: throw exception to the consumer.</li></ul>";

当你直接通过比如Kafka的Client访问时,即使你指定了一个不存在offset,即大于上边界或小于下边界,Kafka也将会根据这一条配置reset你的offset值,比如earliestlatest

但是当你在Spark Streaming中指定了一个OutOfRange的初始offset时,Spark不会理会你的auto.offset.reset,而是会出现文章开头的报错Offsets out of range with no configured reset policy for partitions

关于这一点的讨论可以参见SPARK-19680。这里摘录部分内容

The issue here is likely that you have lost data (because of retention expiration) between the time the batch was defined on the driver, and the time the executor attempted to process the batch. Having executor consumers obey auto offset reset would result in silent data loss, which is a bad thing.

There's a more detailed description of the semantic issues around this for kafka in KAFKA-3370 and for structured streaming kafka in SPARK-17937

If you've got really aggressive retention settings and are having trouble getting a stream started, look at specifying earliest + some margin on startup as a workaround. If you're having this trouble after a stream has been running for a while, you need more retention or smaller batches.

If you got an OffsetOutOfRangeException after a job had been running
for 4 days, it likely means that your job was not running fast enough
to keep up, and retention expired records that had not yet been
processed.

因而,对于上述这种情况,为了避免这样的问题发生,需要在程序初始化时,校验当前Kafka中的offset边界情况。如果当前存储的值低于最小值,应该调整为最小值。如何检验?可以参考我的另一篇博客:Fetch Offset range in Kafka

当然,这种丢失数据的情况通常是不应该出现的,应记录或避免这个情况。

  • 关于offset的管理,可以参见your-own-data-store
  • 关于Flume、Kafka、Spark、TSDB,欢迎指教与交流
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,644评论 18 139
  • PLEASE READ THE FOLLOWING APPLE DEVELOPER PROGRAM LICENSE...
    念念不忘的阅读 13,459评论 5 6
  • Spark SQL, DataFrames and Datasets Guide Overview SQL Dat...
    草里有只羊阅读 18,313评论 0 85
  • 当我从一路上一边慢腾腾挪腾,一边放着黑乎乎的屁的手扶拖拉机上跳下来的时候,我觉得我站在了过去三十年来我站过的最高的...
    张毛盛阅读 430评论 2 1
  • 忘记过去 有过多少个曾经 曾经同数漫天的星星 有过多少个曾经 曾经分手时的泪光晶莹 曾经流逝的岁月 一起走过的日子...
    MrME_Lee阅读 219评论 0 0