R语言里面的因子

R语言中的因子确实不好理解,很多人都这么觉得。在R语言中,因子(factor)表示的是一个符号、一个编号或者一个等级,即,一个点。例如,人的个数可以是1,2,3,4......那么因子就包括,1,2,3,4.....还有统计量的水平的时候用到的高、中、低,也是因子,因为他是一个点。与之区别的向量,是一个连续性的值,例如,数值中有1,1.1,1.2......可以作为数值来计算,而因子则不可以。如果用我自己的理解,简单通俗来讲:因子是一个点,向量是一个有方向的范围。在R中,如果把数字作为因子,那么在导入数据之后,需要将向量转换为因子(factor),而因子在整个计算过程中不再作为数值,而是一个"符号"而已。因子的水平就是因子的所有不相同的符号的集合。

创建因子的函数介绍如下:

factor(x, levels = sort(unique(x), na.last = TRUE),

labels = levels, exclude = NA, ordered = is.ordered(x))

levels 用来指定因子可能的水平(缺省值是向量x中互异的值);labels

用来指定水平的名字;exclude表示从向量x中剔除的水平值;ordered是

一个逻辑型选项用来指定因子的水平是否有次序。回想数值型或字符型

的x。

> factor(1:3)

[1] 1 2 3

Levels: 1 2 3

> factor(1:3, levels=1:5)

[1] 1 2 3

Levels: 1 2 3 4 5

> factor(1:3, labels=c("A", "B", "C"))

[1] A B C

Levels: A B C

> factor(1:5, exclude=4)

[1] 1 2 3 NA 5

Levels: 1 2 3 5

函数levels用来提取一个因子中可能的水平值:

> f <- factor(c(2, 4), levels=2:5)

> f

[1] 2 4

Levels: 2 3 4 5

> levels(f)

[1] "2" "3" "4" "5"

因子用来存储类别变量(categorical variables)和有序变量,这类变量不能用来计算而只能用来分类或者计数。因子表示分类变量,有序因子表示有序变量。生成因子数据对象的函数是factor(),语法是factor(data, levels, labels, ...),其中data是数据,levels是因子水平向量,labels是因子的标签向量。

1、创建一个因子。

例1:

>colour <- c('G', 'G', 'R', 'Y', 'G', 'Y', 'Y', 'R', 'Y')

>col <- factor(colour)

>col1 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('Green', 'Red', 'Yellow')) #labels的内容替换colour相应位置对应levels的内容

>col2 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('1', '2', '3'))

>col_vec <- as.vector(col2) #转换成字符向量

>col_num <- as.numeric(col2) #转换成数字向量

>col3 <- factor(colour, levels = c('G', 'R'))

2、创建一个有序因子。

例1:

>score <- c('A', 'B', 'A', 'C', 'B')

>score1 <- ordered(score, levels = c('C', 'B', 'A'));

>score1

[1] A B A C B

Levels: C < B < A

3、用cut()函数将一般的数据转换成因子或有序因子。

例1:

>exam <- c(98, 97, 52, 88, 85, 75, 97, 92, 77, 74, 70, 63, 97, 71, 98, 

65, 79, 74, 58, 59, 60, 63, 87, 82, 95, 75, 79, 96, 50, 88)

>exam1 <- cut(exam, breaks = 3) #切分成3组

>exam1

[1] (82,98] (82,98] (50,66] (82,98] (82,98] (66,82] (82,98] (82,98] (66,82]

[10] (66,82] (66,82] (50,66] (82,98] (66,82] (82,98] (50,66] (66,82] (66,82]

[19] (50,66] (50,66] (50,66] (50,66] (82,98] (66,82] (82,98] (66,82] (66,82]

[28] (82,98] (50,66] (82,98]

Levels: (50,66] (66,82] (82,98]

>exam2 <- cut(exam, breaks = c(0, 59, 69, 79, 89, 100)) #切分成自己设置的组

> exam2

[1] (89,100] (89,100] (0,59]   (79,89]  (79,89]  (69,79]  (89,100] (89,100]

[9] (69,79]  (69,79]  (69,79]  (59,69]  (89,100] (69,79]  (89,100] (59,69]

[17] (69,79]  (69,79]  (0,59]   (0,59]   (59,69]  (59,69]  (79,89]  (79,89]

[25] (89,100] (69,79]  (69,79]  (89,100] (0,59]   (79,89]

Levels: (0,59] (59,69] (69,79] (79,89] (89,100]

>attr(exam1, 'levels');

[1] "(50,66]" "(66,82]" "(82,98]"

>attr(exam2, 'levels');

[1] "(0,59]"   "(59,69]"  "(69,79]"  "(79,89]"  "(89,100]"

>attr(exam2, 'class')

[1] "factor"

#一个有序因子

> x <- factor(rep(1:5,3))

> ordered(x,labels = c('a1','a2','a3','a4','a5'))

[1] a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

Levels: a1 < a2 < a3 < a4 < a5

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,366评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,521评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,689评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,925评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,942评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,727评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,447评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,349评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,820评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,990评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,127评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,812评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,471评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,017评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,142评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,388评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,066评论 2 355

推荐阅读更多精彩内容

  • 目前能ping通的IP:216.58.193.51 59.18.44.245 59.18.44.53 59.18....
    StevenZack阅读 1,712评论 0 0
  • 删掉重新来一次吧,记得改那个脚本修改 /home/ubuntu/eos/scripts/install_depen...
    卢衍泓阅读 1,144评论 0 1
  • 1、财务指标本身就有层级。用销售收入,产值,利润这样的指标来衡量经营业绩没问题,但用来衡量和拉动管理水平就太不够看...
    米兰默阅读 206评论 0 0
  • 第一章 类型 1.1类型 1.2内置类型 空值( null) 未定义( undefined) 布尔值( boole...
    不系流年系乾坤阅读 174评论 0 0
  • 今天早上我一觉醒来摸手机看时间,发现手机黑屏,然后我心里就很有b数了,这件事要从昨天晚上说起,昨晚我洗漱的时候,手...
    zero一一阅读 365评论 0 0