05 SVM - 支持向量机 - 概念、线性可分

04 SVM - 感知器模型

一、SVM概念

支持向量机(Support Vector Machine, SVM)本身是一个二元分类算法,是对感知器算法模型的一种扩展,现在的SVM算法支持线性分类非线性分类的分类应用,并且也能够直接将SVM应用于回归应用中,同时通过OvR或者OvO的方式我们也可以将SVM应用在多元分类领域中。在不考虑集成学习算法,不考虑特定的数据集的时候,在分类算法中SVM可以说是特别优秀的。

SVM概念

在感知器模型中,算法是在数据中找出一个划分超平面,让尽可能多的数据分布在这个平面的两侧,从而达到分类的效果,但是在实际数据中这个符合我们要求的超平面是可能存在多个的。

出一个划分超平面,让尽可能多的数据分布在这个平面的两侧

在感知器模型中,我们可以找到多个可以分类的超平面将数据分开,并且优化时希望所有的点都离超平面尽可能的远,但是实际上离超平面足够远的点基本上都是被正确分类的,所以这个是没有意义的;反而比较关心那些离超平面很近的点,这些点比较容易分错。所以说我们只要让离超平面比较近的点尽可能的远离这个超平面,那么我们的模型分类效果应该就会比较不错。SVM其实就是这个思想。

让离超平面比较近的点尽可能的远离这个超平面

SVM核心思想:找到离分割超平面较近的点(预测错误可能会高),然后想办法让它们离超平面的距离远。

PS: SVM在若干年前,当数据量还比较少的时候,SVM是最好的分类模型。但是现在随着数据量的不断增大,SVM模型运算速度较慢的缺点开始暴露。而且随着这些年集成学习的不算成熟,现在SVM普遍用于集成学习中基模型的构建。

几个重要的概念:

线性可分(Linearly Separable):在数据集中,如果可以找出一个超平面,将两组数据分开,那么这个数据集叫做线性可分数据。

线性不可分(Linear Inseparable):在数据集中,没法找出一个超平面,能够将两组数据分开,那么这个数据集就叫做线性不可分数据。

分割超平面(Separating Hyperplane):将数据集分割开来的直线/平面叫做分割超平面。

间隔(Margin):数据点到分割超平面的距离称为间隔。

支持向量(Support Vector):离分割超平面最近的那些点叫做支持向量。

二、线性可分SVM

回顾: 支持向量到超平面的距离为:

支持向量到超平面的距离

PS:在SVM中支持向量到超平面的函数距离一般设置为1;

支持向量到超平面的距离 - 几何意义

SVM模型 是让所有的分类点在各自类别的支持向量的两边,同时要求支持向量尽可能的远离这个超平面,用数学公式表示如下:

让所有分类点在各自类别的支持向量的两边,同时要求支持向量 尽可能的远离这个超平面
SVM目标函数/损失函数为:
SVM损失函数

1、将此时的目标函数和约束条件使用KKT条件转换为拉格朗日函数,从而转换为无约束的优化函数

无约束的优化函数

2、引入拉格朗日乘子后,优化目标变成:

原问题

3、根据拉格朗日对偶化特性,将该优化目标转换为等价的对偶问题来求解,从而优化目标变成:

对偶问题

4、所以对于该优化函数而言,可以先求优化函数对于w和b的极小值,然后再求解对于拉格朗日乘子β的极大值。

对偶问题 - 函数展开

5、首先求让函数L极小化的时候w和b的取值,这个极值可以直接通过对函数L分别求w和b的偏导数得到:

6、将求解出来的w和b带入优化函数L中,定义优化之后的函数如下:

7、通过对w、b极小化后,我们最终得到的优化函数只和β有关,所以此时我们可以直接极大化我们的优化函数,得到β的值,从而可以最终得到w和b的值;

PS:β值的求解使用SMO算法,后续会介绍

8、求解wT+b中b的值。

假设存在最优解β*; 根据w、b和β的关系,可以分别计算出对应的w值和b值(使用支持向量对应的样本点来计算,作为实际的b值,支持向量求解出的b值是唯一解);

这里的(xs,ys)即支持向量,根据KKT条件中的对偶互补条件(松弛条件约束),支持向量必须满足以下公式:

支持向量需要满足的公式

06 SVM - 线性可分SVM算法和案例

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352