TensorFlow从0到1 - 4 - 第一个机器学习问题

TensorFlow从0到1系列回顾

上一篇 3 机器人类学习的启示借鉴人类学习的模式,描绘了数据驱动的机器学习方法论:通过大量数据来确定模型,从而让模型具有预测价值。本篇提出第一个机器学习问题,进一步看清楚机器学习的具体形式。

平行世界

在宇宙的一个平行世界中,天空是平面的,人们只能看到位于第一象限的星星。他们发现天上最亮的那颗星在缓慢的移动,于是收集了近千年以来所有天文学家的观测数据,共得到4次观测记载:

  • 2200年,(22, 18)
  • 2500年,(25, 15)
  • 2800年,(28, 12)
  • 3000年,(30, 10)

由于这颗星的意义非凡,人们想计算出这颗星的运行轨道,并预测当4000年来临时它是否会消失。

平面星空

从数据得到模型

人类的学习

先套用下人类的学习模式:

  • 获取数据:仅有的4次记录全部拿到;
  • 分析数据:将4次记录全部画在直角坐标系平面上,发现全部落在一条直线上;
  • 建立模型:利用函数知识得出一般的直线函数式为y=ax+b,但是a,b未知;
  • 预测未知:一旦知道了a和b的确切值,就得到了运行轨迹(直线)的模型,根据模型即可开展预测,比如给定任意的x坐标,即可得出y坐标。

到此,我们提出第一个机器学习问题:直线模型的参数a和b如何得出?

实际上预设模型的表示(representation)为直线,已经大大降低了“学习难度”

对了,平行世界的人们还不会解二元一次方程组。他们要用数据去训练这个模型。

损失函数

他们希望有个算法,能找到模型的a和b,以至于模型的训练输出y,能够拟合所有的训练输入x。为了量化该目标,他们定义了损失函数:

B-P-F-1 损失函数

对函数的形式做一些说明:

  • C是变量a和b的二元函数,而且是二次函数,C ≥ 0;
  • n是训练数据的个数;
  • output表示当输入为x时当前模型的实际输出;
  • y(x)表示训练输入为x时,对应的训练输出y。

这个损失函数的意义何在呢?

以终为始,假设找到了正确的a和b,确定了模型y=ax+b,那么对于任一x的取值,损失函数中的output(x)将等于y(x),即y(x)-output(x) = 0,此时“损失”为0。换句话说,确定最终a和b的过程,就是让损失函数达到其最小值的过程。此时,训练输出y“拟合了”训练输入x。

损失函数的形式,也是常见的一种统计定义,被称为均方误差MSE(Mean Squared Error),在这个语境下,y(x)被称为期望值,output(x)为观测值。任何误差都会被放大并累积起来。

到此,问题好像变的复杂了。没错,待确定模型y=ax+b虽然是一个一元一次函数,但是其损失函数却是二元二次函数。从函数图形上看它是一个曲面,而函数的最小值点处的a和b的取值,就是我们的线性模型的最佳参数。

二次曲面

训练

他们找了台机器准备开始训练模型,4次观测数据全部用于训练(22, 18),(25, 15),(28, 12),(30, 10)。

先给个初始值,让a = -1, b = 50,看看“损失”是多少?

C(-1, 50) = 1/8 x [(18 - (-22 + 50))2 + (15 - (-25 + 50))2 + (12 - (-28 + 50))2 + (10 - (-30 + 50))2] = 50。

看来离“损失”为0还有差距。

换个值接着练,让a = -1, b = 40,再计算下“损失”:

C(-1, 40) = 1/8 x [(18 - (-22 + 40))2 + (15 - (-25 + 40))2 + (12 - (-28 + 40))2 + (10 - (-30 + 40))2] = 0。

运气不要太好!“损失”降至0,此时a = -1, b = 40。

确定模型并预测

训练做了2次,就找到了损失函数的最小值,这背后有种神秘的力量,指引(a,b)从(-1,50)迁移到了(-1,40)。不管怎样,天空最亮的那颗星的运行轨道模型总算是建立好了:y = -x + 40。这将载入史册,成为天文学的一个里程碑。

接下来完成预测吧:4000年来临时它会消失吗?

基于历史数据:

  • 2200年,(22, 18)
  • 2500年,(25, 15)
  • 2800年,(28, 12)
  • 3000年,(30, 10)

可以看出该星的x方向的速度是1/100年,那么到了4000年时,其位置的x坐标为:30 + 1/100年 x (4000-3000) = 40。

将x = 40,代入模型y = -x + 40,得到y = 0。就是说4000年来临时,该星的位置坐标是(40, 0)。预测非常悲观:届时它就要消失在第一象限之外了!

上一篇 3 人类学习的启示
下一篇 5 TF轻松搞定线性回归


共享协议:署名-非商业性使用-禁止演绎(CC BY-NC-ND 3.0 CN)
转载请注明:作者黑猿大叔(简书)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容