tensorflow for research 学习笔记3

TensorFlow中的Linear Regression

线性回归是机器学习中非常简单的问题,我们用tensorflow实现一个小例子。

问题: 希望能够找到一个城市中纵火案和盗窃案之间的关系,纵火案的数量是X,盗窃案的数量是Y,我们建设存在如下线性关系,Y = wX + b。

TensorFlow实现

首先定义输入X和目标Y的占位符(placeholder)

X = tf.placeholder(tf.float32, shape=[], name='input')
Y = tf.placeholder(tf.float32, shape=[], name='label')

里面shape=[]表示标量(scalar)

然后定义需要更新和学习的参数w和b

w = tf.get_variable(
    'weight', shape=[], initializer=tf.truncated_normal_initializer())
b = tf.get_variable('bias', shape=[], initializer=tf.zeros_initializer())

接着定义好模型的输出以及误差函数,这里使用均方误差(Y - Y_predicted)^2

Y_predicted = w * X + b
loss = tf.square(Y - Y_predicted, name='loss')

然后定义好优化函数,这里使用最简单的梯度下降,这里的学习率不仅可以是常量,还可以是一个tensor

optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-3).minimize(loss)

tensorflow是如何判断哪些参数该更新,哪些参数不更新呢?tf.Variabel(trainable=False)就表示不对该参数进行更新,默认下tf.Variable(trainable=True)

然后在session中做运算

init = tf.global_variables_initializer()
with tf.Session() as sess:
    writer = tf.summary.FileWriter('./linear_log', graph=sess.graph)
    sess.run(init)
    for i in range(100):
        total_loss = 0
        for x, y in data:
            _, l = sess.run([optimizer, h_loss], feed_dict={X: x, Y: y})
            total_loss += l
        print("Epoch {0}: {1}".format(i, total_loss / n_samples))

可视化

我们可以打开tensorboard查看我们的结构图如下

Paste_Image.png

最后我们将数据点和预测的直线画出来

Paste_Image.png

如何改善模型

  1. 我们可以增加维度,原始模型是Y = Xw + b,我们可以提升一维,使其变成Y = X^2 w1 + X w2 + b

  2. 可以换一种loss的计算方式,比如huber loss,当误差比较小的时候使用均方误差,误差比较大的时候使用绝对值误差

Paste_Image.png

在实现huber loss的时候,因为tf是以图的形式来定义,所以不能使用逻辑语句,比如if等,我们可以使用TensorFlow中的条件判断语句,比如tf.wheretf.case等等,huber loss的实现方法如下

def huber_loss(labels, predictions, delta=1.0):
    residual = tf.abs(predictions - labels)
    condition = tf.less(residual, delta)
    small_res = 0.5 * residual**2
    large_res = delta * residual - 0.5 * delta**2
    return tf.where(condition, small_res, large_res)

关于Optimizer

TensorFlow会自动求导,然后更新参数,使用一行代码tf.train.GradientDescentOptimizer(learning_rate=1e-3).minimize(loss),下面我们将其细分开来,讲一讲每一步。

自动梯度

首先优化函数的定义就是前面一部分opt = tf.train.GradientDescentOptimizer(learning_rate),定义好优化函数之后,可以通过grads_and_vars = opt.compute_gradients(loss, <list of variables>)来计算loss对于一个变量列表里面每一个变量的梯度,得到的grads_and_vars是一个list of tuples,list中的每个tuple都是由(gradient, variable)构成的,我们可以通过get_grads_and_vars = [(gv[0], gv[1]) for gv in grads_and_vars]将其分别取出来,然后通过opt.apply_gradients(get_grads_and_vars)来更新里面的参数,下面我们举一个小例子。

import tensorflow as tf

x = tf.Variable(5, dtype=tf.float32)
y = tf.Variable(3, dtype=tf.float32)

z = x**2 + x * y + 3

sess = tf.Session()
# initialize variable
sess.run(tf.global_variables_initializer())

# define optimizer
optimizer = tf.train.GradientDescentOptimizer(0.1)

# compute gradient z w.r.t x and y
grads_and_vars = optimizer.compute_gradients(z, [x, y])

# fetch the variable
get_grads_and_vars = [(gv[0], gv[1]) for gv in grads_and_vars]

# dz/dx = 2*x + y= 13
# dz/dy = x = 5
print('grads and variables')
print('x: grad {}, value {}'.format(
    sess.run(get_grads_and_vars[0][0]), sess.run(get_grads_and_vars[0][1])))

print('y: grad {}, value {}'.format(
    sess.run(get_grads_and_vars[1][0]), sess.run(get_grads_and_vars[1][1])))

print('Before optimization')
print('x: {}, y: {}'.format(sess.run(x), sess.run(y)))

# optimize parameters
opt = optimizer.apply_gradients(get_grads_and_vars)
# x = x - 0.1 * dz/dx = 5 - 0.1 * 13 = 3.7
# y = y - 0.1 * dz/dy = 3 - 0.1 * 5 = 2.5
print('After optimization using learning rate 0.1')
sess.run(opt)
print('x: {:.3f}, y: {:.3f}'.format(sess.run(x), sess.run(y)))
sess.close()

上面程序的注释已经解释了所有的内容,就不细讲了,最后可以得到下面的结果。

Paste_Image.png

在实际中,我们当然不用手动更新参数,optimizer类可以帮我们自动更新,另外还有一个函数也能够计算梯度。

tf.gradients(ys, xs, grad_ys=None, name='gradients',  colocate_gradients_with_ops=False, gate_gradients=False,
aggregation_method=None)

这个函数会返回list,list的长度就是xs的长度,list中每个元素都是$sum_{ys}(dys/dx)$。

实际运用: 这个方法对于只训练部分网络非常有用,我们能够使用上面的函数只对网络中一部分参数求梯度,然后对他们进行梯度的更新。

优化函数类型

随机梯度下降(GradientDescentOptimizer)仅仅只是tensorflow中一个小的更新方法,下面是tensorflow目前支持的更新方法的总结

tf.train.GradientDescentOptimizer
tf.train.AdadeltaOptimizer
tf.train.AdagradOptimizer
tf.train.AdagradDAOptimizer
tf.train.MomentumOptimizer
tf.train.AdamOptimizer
tf.train.FtrlOptimizer
tf.train.ProximalGradientDescentOptimizer
tf.train.ProximalAdagradOptimizer
tf.train.RMSPropOptimizer

这个博客对上面的方法都做了介绍,感兴趣的同学可以去看看,另外cs231n和coursera的神经网络课程也对各种优化算法做了介绍。

TensorFlow 中的Logistic Regression

我们使用简单的logistic regression来解决分类问题,使用MNIST手写字体,我们的模型公式如下

$$
logits = X * w + b
$$
$$
Y_{predicted} = softmax(logits)
$$
$$
loss = CrossEntropy(Y, Y_{predicted})
$$

TensorFlow实现

TF Learn中内置了一个脚本可以读取MNIST数据集

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('./data/mnist', one_hot=True)

接着定义占位符(placeholder)和权重参数

x = tf.placeholder(tf.float32, shape=[None, 784], name='image')
y = tf.placeholder(tf.int32, shape=[None, 10], name='label')

w = tf.get_variable(
    'weight', shape=[784, 10], initializer=tf.truncated_normal_initializer())
b = tf.get_variable('bias', shape=[10], initializer=tf.zeros_initializer())

输入数据的shape=[None, 784]表示第一维接受任何长度的输入,第二维等于784是因为28x28=784。权重w使用均值为0,方差为1的正态分布,偏置b初始化为0。

然后定义预测结果、loss和优化函数

logits = tf.matmul(x, w) + b
entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(entropy, axis=0)
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

使用tf.matmul做矩阵乘法,然后使用分类问题的loss函数交叉熵,最后将一个batch中的loss求均值,对其使用随机梯度下降法。

因为数据集中有测试集,所以可以在测试集上验证其准确率

preds = tf.nn.softmax(logits)
correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(y, 1))
accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32), axis=0)

首先对输出结果进行softmax得到概率分布,然后使用tf.argmax得到预测的label,使用tf.equal得到预测的label和实际的label相同的个数,这是一个长为batch的0-1向量,然后使用tf.reduce_sum得到正确的总数。

最后在session中运算,这个过程就不再赘述。

结果与可视化

最后可以得到训练集的loss的验证集准确率如下

Paste_Image.png

可以发现经过10 epochs,验证集能够实现74%的准确率。同时,我们还能够得到tensorboard可视化如下。

Paste_Image.png

这看着是有点混乱的,所以下一次课会讲一下如何结构化我们的模型。


本文的全部代码都在github

欢迎访问我的博客

欢迎查看我的知乎专栏,深度炼丹

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355

推荐阅读更多精彩内容

  • 简单线性回归 import tensorflow as tf import numpy # 创造数据 x_dat...
    CAICAI0阅读 3,547评论 0 49
  • 上一章 十九 云蒙偷偷透过窗棂间的缝隙向厅中望去。厅中一灯如豆,傅山宗背着手缓缓踱来踱去,双眉紧锁。在城外林中经过...
    德万托阿阅读 305评论 0 4
  • 丁酉年夏季酷暑高温,秋季阴寒雨湿。《黄帝内经》说:“夏不伤暑,秋不病疟;秋不伤湿,冬不咳嗽。”今天,是对昨天的修复...
    喝土小能手阅读 356评论 0 1
  • 彩铅多肉—白玫瑰 【本文由“璇子鱼”发布,2017年8月7日】
    璇子鱼阅读 172评论 0 0
  • 母亲的目光 文||与你相识 熟悉的目光里 流露出孤单的忧伤 那别离的心伤 早以写进梦乡 风捕捉到你的问候 还有白云...
    与你相识_40fa阅读 244评论 6 4