Note 5: BERT

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., 2018)

Fig. 1 Devlin et al., (2018)

  1. BERT (Bidirectional Encoder Representations from Transformers) is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers.

2. Two-steps Framework

  • Pre-training: The model is trained on unlabeled data over different pre-training tasks.
  • Fine-tuning: The initialized BERT model is fine-tuned using labeled data from the downstream tasks, while each downstream task has its own tuned model.
  • Fig. 2 Overall (Devlin et al., 2018)

3. Input/Output Representations

  • Although the down-stream tasks are different, the input representation is able to unambiguously represent both a single sentence and a pair of sentences (e.g., \langleQuestion, Answer\rangle) in one token sequence.
  • [CLS]: It is always the first token of every sequence. Especially in classification tasks, it can be used as the aggregate representation of a sequence.
  • [SEP]: It can separate pairs of sentences. Furthermore, we can add a learned segment embedding to each token indicating which sentence it belongs to.
  • For a given token, its input representation is constructed by summing the corresponding token, segment and position embeddings.
  • Fig. 3 Input representation (Devlin et al., 2018)

4. Pre-training

  • Masked LM: Mask some percentage of input tokens at random and then predict these masked tokens.
    • Mask 15% of all tokens in each sequence at random.
    • However, it induces a mismatching problem between pre-training and fine-tuning since the fine-tuning stage dose not have the [MASK] token.
    • To mitigate this problem, if the i-th token is chosen, BERT replaces it with:
      • the [MASK] token 80% of the time
      • a random token 10% of the time
      • the unchanged i-th token 10% of the time
    • Merits: As the model dose not know whether the input token has been replaced, it force the model to keep a distributional contextual representation of every input token.
  • Next sentence prediction (NSP) is a binarized task which can train a model to understand sentence relationships.
    • The training samples can be generated from any monolingual corpus.
    • Label IsNext: 50% of samples are actual sentence A followed by sentence B.
    • Label NotNext: 50% of samples are randomly selected from corpus.
    • The special symbol [CLS]'s output C is used for NSP classification, as shown in Fig. 2.
  • Pre-training data is a document-level corpus rather than a shuffled sentence-level corpus.

5. Fine-tuning BERT

  • BERT encodes a concatenated text pair with self-attention effectively includes bidirectional cross attention between two sentences.
  • Input: above mentioned sentence A and sentence B are analogous to
    • sentence pairs in paraphrasing,
    • hypothesis-premise pairs in entailment,
    • question-passage pairs in question answering,
    • a degenerate text-∅ pair in text classification or sequence tagging.
  • Output:
    • the token representations are fed into an output layer for token-level tasks, such as sequence tagging or question answering.
    • the [CLS] representation is fed into an output layer for classification, such as entailment or sentiment analysis.

6. BERT vs. GPT vs. ELMo

  • BERT uses a bidirectional Transformer. OpenAI GPT (Radford et al., 2018) uses a left-to-right Transformer. ELMo (Peters et al., 2018) uses the concatenation of independently trained left-to-right and right-to-left LSTMs to generate features for downstream tasks.
  • BERT and OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.


    Differences in pre-training model architectures (Devlin et al. 2018)

Reference

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容