流批一体随想

前言

好久不见(鞠躬

今年以来的主要工作方向之一就是部门内流批一体能力的建设与落地。虽然这个概念早已成为老生常谈,并且笔者现在还没什么fancy的成果(惭愧),但今天还是想随便写几句来聊聊。

Why?

考虑经典的Lambda Architecture。

这种架构的出现是历史必然,因为那时的流计算引擎以Storm为代表,而它们都无法提供Exactly-Once语义,所以任何一点小的扰动(延迟、网络问题、系统异常、etc.)就很可能导致实时数据失真。而以Hive on MapReduce为代表的批计算引擎和数据仓库组件早已成熟,因此能够提供准确的离线数据,并且还能为实时数据做出修正。

Lambda Architecture的问题在于两点:其一,speed layer和batch layer采用的是两套技术栈、两套API,开发及维护成本高;其二,流处理和批处理的范式一致性无法保证,产生的结果往往割裂。而Dataflow Model、流批一体及其后的各种implementations的出现,恰好解决了这两个问题,用户可以通过实现流批一体来降本增效,并对齐数据口径。

What?

关于流批一体,至今实际上仍然缺乏统一的定义(如果有的话,请看官务必留言)。个人比较认同的定义如下,这句话来自Flink Forward Asia 2021 Online上莫问大佬的主题演讲<<Flink Next, Beyond Stream Processing>>:

使用同一套API、同一套开发范式来实现大数据的流计算和批计算,进而保证处理过程与结果的一致性。

Google Dataflow Model提出,与Streaming / Batch这种像是描述计算引擎语义的字眼相对,它们原生面向的Unbounded / Bounded Data才更接近本质。由于有界数据天然地是无界流的一部分,就使得“流处理先行,将批处理作为流处理特例”的思路成为可能,同时形成了流批一体的理论基础。

当然,相对于批处理,流处理要更多地考虑数据准确性、延迟、资源消耗之间的trade-off,所以需要施加额外的约束,主要包括窗口模型、触发模型和增量更新模型。看官可参考论文原文,或笔者很久之前写过的解析文章,不再赘述。

How?

计算和存储是大数据这枚硬币的两面,具体到流批一体这个细分领域,仍然免不了要套用这样的思路。

Computation

Flink从诞生起就遵循Dataflow Model的设计思想,也是这条道路上的先驱。从1.9版本开始到目前的1.15版本,Flink社区做了大量努力来将它打造成一个真正流批一体的引擎,包括但不限于:

  • 统一SQL Catalog / Planner / Runtime
  • 统一DataStream API
  • 统一Source / Sink模型
  • 统一Checkpoint / Failover语义
  • 统一DAG / Scheduler实现
  • 统一Shuffle服务
  • ...

关于以上要点,笔者今后会写文章专门阐述。

目前来看,Flink SQL由于其易学习性、通用性、互操作性和元数据能力,已经成为实现流批一体计算的事实标准。特别地,Flink SQL对CDC数据接入、流批join/维表join操作、Hive集成、UDF等特性的深入支持,使得它在流批一体构建ETL pipeline和实时数仓方向具有天然的优势。Flink SQL的Connector / Format体系被设计为模块化、易于扩展的,这也让它能够方便地对接各类外部系统和数据模型,打通数据壁垒。

Storage

众所周知,OLAP引擎没有银弹,但是流批一体存储似乎有比较接近银弹的solution。

纯Kappa Architecture已经被证明是不靠谱的,因为虽然它的链路简单、时效性最好,但传统的消息队列只有有限的存储能力,一般只能保存有限量的Changelog,不能保存全量数据。并且分析型负载需要重放数据的overhead过大,也没有谓词下推等特性。新一代的消息队列如Pulsar、Pravega等在这方面做了增强,如Pulsar采用以Segment为中心的设计,支持层级化存储和海量数据归档,并提供了类文件操作的API,但应用还不广泛。

很多用户可能也会选择在streaming layer的上方额外接入类似ClickHouse、Doris等近实时OLAP组件,但这样会导致架构退化到Lambda Architecture。

排除以上两个option,数据湖组件显然最合适。不管是Iceberg还是Hudi,它们都具备以下优点:

  • 本质是DFS之上的Storage Format,存储门槛低,原生列存;
  • 与Flink相性好,支持流批读写;
  • 支持ACID、MVCC、Time-Travel;
  • 支持Schema Evolution;
  • etc.

当然,数据湖本身也是近实时存储,所以要牺牲一定的时效性。但在实际的业务中,要求达到亚秒级时效的场景很少,所以数据湖以及湖仓一体概念的兴起也就很自然了。

The End

emm,写得太潦草了。

晚安。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容