都有Python了,还要什么编译器!

编译的目的是将源码转化为机器可识别的可执行程序,在早期,每次编译都需要重新构建所有东西,后来人们意识到可以让编译器自动完成一些工作,从而提升编译效率。

但“编译器不过是用于代码生成的软机器,你可以使用你想要的任何语言来生成代码”,真的是必要的吗?

诚然,编译器可以为你生成高性能的代码,但是你真的需要编译器吗?另一种方法是用 Assembly 编写程序,虽然有点夸大,但这种方法有两个主要缺陷:

1. 汇编代码不可移植;

2. 虽然在现代工具的辅助下变得容易了些,但 Assembly 编程仍然需要大量繁琐的工作。

值得庆幸的是,我们都生活在二十一世纪,这两个问题都已得到解决。第一个解决方案是 LLVM,最初,它意味着“低级虚拟机”,这正是我们可以确保可移植性的原因。简而言之,它需要用一些非常低级别的与硬件无关语言编写的代码,并为特定的硬件平台返回一些高度优化的原生代码。使用 LLVM,我们既具有低级编程的强大功能,又具有面向硬件微优化的自动化功能。

第二个问题的解决方法是使用“脚本”语言,Scheme、Python、Perl,甚至 bash 或 AWK 都可以消除繁琐的工作。

实验计划

首先,让我们生成一个完全内联展开的解决方案,并将其嵌入到基准测试代码中。该计划如下:

1. 使用 Clang 为基准生成 LLVM 中间代码,该基准用于测量 solve_5,一个不存在的函数;

2. 使 Python 在 LLVM 中生成线性求解器(linear solver)代码;

3. 使用 Python 脚本测试基准,用生成求解器替换 solve_5 调用;

4. 使用 LLVM 静态编译器将中间代码转换为机器代码;

5. 使用 GNU 汇编器和 Clang 的链接器将机器代码转换为可执行的二进制文件。

这就是它在 Makefile 中的样子:

image

Python 部分

我们需要 Python 中的线性求解器(linear solver),就像我们使用 C 和 C ++ 一样,此处代码为:

# this generates n-solver in LLVM code with LLVMCode objects.
# No LLVM stuff yet, just completely Pythonic solution
def solve_linear_system(a_array, b_array, x_array, n_value):
  def a(i, j, n):
    if n == n_value:
      return a_array[i * n_value + j]
    return a(i, j, n+1)*a(n, n, n+1) - a(i, n, n+1)*a(n, j, n+1)

  def b(i, n):
    if n == n_value:
      return b_array[i]
    return a(n, n, n+1)*b(i, n+1) - a(i, n, n+1)*b(n, n+1)

  def x(i):
    d = b(i,i+1)
    for j in range(i):
      d -= a(i, j, i+1) * x_array[j]
    return d / a(i, i, i+1)

  for k in range(n_value):
    x_array[k] = x(k)

return x_array

当我们用数字运行时,我们可以得到数字。但我们想要代码,因此,我们需要制作一个假装成数字的对象(Object)来探测算法。该对象记录下算法想要执行的每一个操作,并准备好集成 LLVM 中间语言。

# this is basically the whole LLVM layer
I = 0
STACK = []

class LLVMCode:
  # the only constructor for now is by double* instruction
  def __init__(self, io, code = ''):
    self.io = io
    self.code = code
  def __getitem__(self, i):
    global I, STACK
    copy_code = "%" + str(I+1)
    copy_code += " = getelementptr inbounds double, double* "
    copy_code += self.io +", i64 " + str(i) + "\n"
    copy_code += "%" + str(I+2)
    copy_code += " = load double, double* %" + str(I+1)
    copy_code += ", align 8\n"
    I += 2
    STACK += [I]
    return LLVMCode(self.io, copy_code)
  def __setitem__(self, i, other_llvcode):
    global I, STACK
    self.code += other_llvcode.code
    self.code += "%" + str(I+1)
    self.code += " = getelementptr inbounds double, double* "
    self.code += self.io +", i64 " + str(i) + "\n"
    self.code += "store double %" + str(I)
    self.code += ", double* %" + str(I+1) + ", align 8\n"
    I += 1
    STACK = STACK[:-1]
    return self
  def general_arithmetics(self, operator, other_llvcode):
    global I, STACK
    self.code += other_llvcode.code;
    self.code += "%" + str(I+1) + " = f" + operator
    self.code += " double %" + str(STACK[-2]) + ", %"
    self.code += str(STACK[-1]) + "\n";
    I += 1
    STACK = STACK[:-2] + [I]
    return self
  def __add__(self, other_llvcode):
    return self.general_arithmetics('add', other_llvcode)
  def __sub__(self, other_llvcode):
    return self.general_arithmetics('sub', other_llvcode)
  def __mul__(self, other_llvcode):
    return self.general_arithmetics('mul', other_llvcode)
  def __div__(self, other_llvcode):
    return self.general_arithmetics('div', other_llvcode)

接着,当我们使用这种对象运行求解器时,我们得到了一个用 LLVM 中间语言编写的全功能线性求解器。然后我们将其放入基准代码中进行速度测试(看它有多快)。

LLVM 中的指令有编号,我们希望保存枚举,因此将代码插入到基准测试中的函数很重要,但也不是很复杂。

# this replaces the function call
# and updates all the instructions' indices
def replace_call(text, line, params):
  global I, STACK
  # '%12 ' -> 12
  I = int(''.join(
    [xi for xi in params[2] if xi.isdigit()]
    ))
  first_instruction_to_replace = I + 1
  STACK = []
  replacement = solve_linear_system(
    LLVMCode(params[0]),
    LLVMCode(params[1]),
    LLVMCode(params[2]), 5).code
  delta_instruction = I - first_instruction_to_replace + 1
  for i in xrange(first_instruction_to_replace, sys.maxint):
    not_found = sum(
      [text.find('%' + str(i) + c) == -1
        for c in POSSIBLE_CHARS_NUMBER_FOLLOWS_WITH]
      )
    if not_found == 4:
      # the last instruction has already been substituted
      break
    new_i = i + delta_instruction
    for c in POSSIBLE_CHARS_NUMBER_FOLLOWS_WITH:
      # substitute instruction number
      text = text.replace('%' + str(i) + c, '%' + str(new_i) + c)
return text.replace(line, replacement)

实现解算器的整段代码提供了 Python-to-LLVM 层,其中代码插入只有 100 行!

基准

基准测试本身在 C 中。当我们运行 Makefile 时,它对 solve_5 的调用被 Python 生成的 LLVM 代码所取代。

Step 1. Benchmark C source code

image

Step 2. LLVM 汇编语言

image

Step 3. 调用替换后的 LLVM

image

Step 4. 本地优化装配

image

最值得注意的是 Python 脚本生成的超冗长中间代码如何变成一些非常紧凑且非常有效的硬件代码。同时它也是高度标量化的,但它是否足以与 C 和 C++ 的解决方案竞争呢?

以下是三种情况的近似数字(带有技巧的 C、C++ 与基于 LLVM 的 Python 的性能对比):

1. C 的技巧对 Clang 来说并不适用,因此测量 GCC 版本,其平均运行大约 70 毫秒;

2. C++ 版本是用 Clang 构建的,运行时间为 60 毫秒;

3. Python 版本(此处描述的版本)仅运行 55 毫秒。

image

当然,这种加速并不是关键,但这表明你可以用 Python 编写出胜过用 C 或 C++ 编写的程序。这也就暗示你不必学习一些特殊语言来创建高性能的应用程序或库。

结论

快速编译语言和慢速脚本语言之间的对立不过是虚张声势。原生代码生成的可能不是核心功能,而是类似于可插拔选项。像是 Python 编译器 Numba 或 Lua 的 Terra,其优势就在于你可以用一种语言进行研究和快速原型设计,然后使用相同的语言生成高性能的代码。

高性能计算没有理由保留编译语言的特权,编译器只是用于代码生成的软机器。你可以使用你想要的任何语言生成代码,我相信如果你愿意,你可以教 Matlab 生成超快的 LLVM 代码。

这里有我自己整理了一套最新的python系统学习教程,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。送给正在学习python的小伙伴!这里是python学习者聚集地,欢迎初学和进阶中的小伙伴!
小编的交流群:556370268

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,657评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,889评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,057评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,509评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,562评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,443评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,251评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,129评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,561评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,779评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,902评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,621评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,220评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,838评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,971评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,025评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,843评论 2 354

推荐阅读更多精彩内容