LeetCode.1137-第N个泰波那契数(N-th Tribonacci Number)

这是小川的第409次更新,第441篇原创

看题和准备

今天介绍的是LeetCode算法题中Easy级别的第260题(顺位题号是1137)。Tribonacci(泰波那契)序列Tn定义如下:

对于n> = 0,T0 = 0,T1 = 1,T2 = 1,并且T(n+3) = T(n) + T(n+1) + T(n+2)

给定n,返回Tn的值。

例如:

输入:n = 4
输出:4
说明:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4

输入:n = 25
输出:1389537

注意

  • 0 <= n <= 37

  • 答案保证小于32位整数,即 答案 <= 231 - 1。

第一种解法

泰波那契,和斐波那契数列相似,只是比斐波那契数列多了一项,后一项的值为前三项的值之和。

暴力解法,直接使用递归,会超时

public int tribonacci(int n) {
    if (n <= 2) {
        return n == 0 ? 0 : 1;
    }
    return tribonacci(n-1)+tribonacci(n-2)+tribonacci(n-3);
}


第二种解法

在第一种解法中,使用了递归,虽然代码变简单了,但是多了许多重复计算,比如T(4) = T(3)+T(2)+T(1) = T(0)+T(1)+T(2)+T(2)+T(1),只是计算n为4时,就计算了两次n为0和n为1,当n更大时,重复的计算会严重影响代码计算速度。

我们可以使用数组,将每一步的计算结果都保存起来,当新的一项需要前面三项的计算结果时,可以直接从数组中取,减少不必要的重复计算。

此解法的时间复杂度是O(N),空间复杂度为O(N),使用了一个容量为n+1的数组。

public int tribonacci2(int n) {
    if (n <= 2) {
        return n == 0 ? 0 : 1;
    }
    int[] arr = new int[n+1];
    arr[1] = arr[2] = 1;
    for (int i=3, len=arr.length; i<len; i++) {
        arr[i] = arr[i-1]+arr[i-2]+arr[i-3];
    }
    return arr[n];
}


第三种解法

在第二种解法的基础上,我们还可以继续优化。

泰波那契数列中,新的一项需要借助前三项的值得到,例如T(6) = T(5)+T(4)+T(3),在第二种解法中,我们却将T(0)T(1)T(2)的值都存起来了,但是计算T(6)又用不到T(0)T(1)T(2),浪费了存储空间。对此,我们可以使用局部变量替换数组,只保留前三项的值,每次计算完新的一项值后,更新一次前三项的值即可。

此解法的时间复杂度是O(N),空间复杂度为O(1),只使用了4个局部变量。

public int tribonacci3(int n) {
    if (n <= 2) {
        return n == 0 ? 0 : 1;
    }
    int T0 = 0, T1 = 1, T2 = 1;
    int temp = 0;
    for (int i=3; i<n+1; i++) {
        temp = T0 + T1 + T2;
        T0 = T1;
        T1 = T2;
        T2 = temp;
    }
    return temp;
}


小结

算法专题目前已更新LeetCode算法题文章266+篇,公众号对话框回复【数据结构与算法】、【算法】、【数据结构】中的任一关键词,获取系列文章合集。

以上就是全部内容,如果大家有什么好的解法思路、建议或者其他问题,可以下方留言交流,点赞、留言、转发就是对我最大的回报和支持!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,313评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,369评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,916评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,333评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,425评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,481评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,491评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,268评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,719评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,004评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,179评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,832评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,510评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,153评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,402评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,045评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,071评论 2 352

推荐阅读更多精彩内容