解題思路 :
利用 post-order 的尾端找到 root 的值 再用 root 值去 inorder 找到 root 在 inorder 中的 index 接著用 inorder 的頭到 index -1 的範圍當作左子數的範圍 index + 1 到 index 尾的範圍當右邊子樹的範圍繼續 recursive 注意在 recursive 裡面修改 postorder 檢查範圍的地方 要用到 inorder 的 root 跟兩邊的距離來算
C++ code :
<pre><code>
/**
- Definition of TreeNode:
- class TreeNode {
- public:
int val;
TreeNode *left, *right;
TreeNode(int val) {
this->val = val;
this->left = this->right = NULL;
}
- }
*/
class Solution {
/**
*@param inorder : A list of integers that inorder traversal of a tree
*@param postorder : A list of integers that postorder traversal of a tree
*@return : Root of a tree
*/
public:
int getIndex(vector<int> &v, int target)
{
for(int i = 0; i < v.size(); i++)
{
if(v[i] == target) return i;
}
return -1;
}
TreeNode *build(vector<int> &IN, int istart, int iend, vector<int> &POST, int pstart, int pend )
{
if(istart > iend || pstart > pend) return nullptr;
int root_val = POST[pend];
int index = getIndex(IN, root_val);
TreeNode *root = new TreeNode(root_val);
root->left = build(IN, istart, index - 1, POST, pstart, pstart + (index - istart) - 1);
root->right = build(IN, index + 1, iend, POST, pstart + (index - istart), pend - 1);
return root;
}
TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
// write your code here
int iend = inorder.size() - 1;
int pend = postorder.size() -1;
return build(inorder, 0, iend, postorder, 0, pend);
}
};