掺铒光纤放大器__Intro (sth. in brief for Erbium-dopedfiberamplifiers)

    1917年,Einstein发表题为"论辐射量子理论 (On the quantum theory of radiation)" 的论文,提出激光的两条物理原理:

a.原子的发射和吸收机理 (Emmision and absorption of atoms)

b.原子能级占有数反转的实现 (Realizing the inversion of occupation number of atomic level)

即,论文中的三种条件原子的自发辐射 (Spontaneous radiation)、受激吸收 (Simulated absoption)、受激辐射 (Simulated radiation)。

    "光和热辐射能量一样量子化"这一辐射理论观念在物理学中立即起到导火索的作用,Quantum Mechanics 这门新学科迅速发展起来,然而在非理论物理界的四十年后它才开始被广泛应用,人们制造出强"泵浦 (Pump)"和适当反馈的光学谐振腔发射可资利用的激光 (Light Amplification by Stimulated Emission of Radiation, ie. LASER)

基于 LASER 的高能武器

    当然最不科幻的应用就是在通信中了,激光源的出现,再加上自然界送给光纤通信的礼物: "铒"元素,用它制造出的光纤"掺铒光纤"具备了奇迹性的巧合:

Er离子的增益谱与光纤传输最低损耗窗口重合。

掺铒光纤

    这些因素直接促成了所谓"全光通信网"的产生,吊足胃口之后下面也该进入正题了。。。╮( •́ω•̀ )╭  •﹏•

    The theses is simple at the first sight but not as easy as it seems, the topic as Optical Amplifier has rich and broad content in it, and, the most important thing it has, the votality.

    The picture below just want to make you clear with the problem "What can Amplifier mainly help us to do?"

What can Amplifier mainly help us to do?

    The Optical Amplifier, with the simple reason with "Easily breaking through the electronic bottle neck", has become a nova in Optical-fiber communication, which directly leads to the emergence of all-optical communication network, that means, provide us dozens of Tbits/s information capacity, however, in this active family, the most famous and has been put into use to get great benefits one is named "Erbium-doped fiber amplifiers (Abbreviation for EDFA)".

EDFA device in practical
EDFA module

        All the reason is made by the creature, ie. the miracle, that the erbium atom has its gain spectrum coincide with the energy level of the lowest minimum loss window (In optical-fiber telecommunitation).

Erbium Absorption and gain

    There are two important portion of the Amplifier made by Erbium:

\color{gold}{\mathfrak{A}.\ Pump \ Laser}。。。。。。\color{gold}{\mathfrak{B}.\  Erbium-doped \ fiber}。。。。。。

    I will explain what the Er-doped fiber(掺铒光纤EDF) in the following statement.

    Easily speaking, EDF is a special form of optical fiber, and has a same structure as single mode fiber, the main difference is that it is made by Er^{3+}.

EDF Structure

    As you can learn from the figurre of "EDF Structure", erbium ions are located at the center of the fiber, which allows themto absorb maximum pump and signal energy for better amplification. The glass cladding witn low refractive index is used to perfect the waveguide structure, besides, providess the properties to the fiber, and the coating is used to increase the diameter of the light.

Principle of EDFA function and course of EDFA work?

\color{gold}{\mathfrak{C}.} The pumped light source emits a laser (980nm) which excites erbium ions Er^{3+} to transition from the ground state to the excited state (ie. the pumped energy band).

\color{gold}{\mathfrak{D}.} The excited state of the excited ion is very unstable and rapidly decays to metastabe states (Approximately to 1\mu s), and release the excess energy as phonons.

\color{gold}{\mathfrak{E}.} Metastable particle accumulation will gradually forms the reversed particle number distribution, hence Er^{3+} will have transition from the metastable state to the bottom (10ms).

\color{gold}{\mathfrak{F}.} If can find the pump source formed 1480nm of laser, electron will jump from ground energy level to the metastable state level, and then it will form the reversed particle number distribution again. (Maybe there will also exist the signal light to excites the electron)

\color{gold}{\mathfrak{G}.} The metastable state will soon jump back to the ground level with the corresponding photon of signal, and the laser it gives out will possess the same phase (That means, have good coherence proporties) of the signal.

Process of EDFA function

Structure! Let's have a look of it!

    The figures below gives you explamation of how these two components form the Amplifier as EDFA and how to install it into the Optical-fiber communication Net.

Multiply the two components to get the EDFA
Install it!

Advantages of it! (I'll be less rigorous to neglect the disadvantages)

    1. It's oprating band is just at the lowest dissipation. 1525-1565nm

    2. It's boardband can amplifier more WDM signal at the same time.

    3. The sufficient interaction between light and matter greatly improves the efficiency of energy convertion.

    4. High gain and low noise.

    Of course, If can get multiple light source to excite fibers, the advantages will shine through better.

    掺铒光纤放大器是大自然赠予光纤通信的礼物ヾ(´∀`。ヾ)。。我带着营业式的表情这样复述到。。。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容