分形维度特征——基于Python实现

理论介绍:Higuchi Algorithm:

Step1:子采样

对长度为N的序列,以间隔K进行采样,起始点m=(1, 2, ..., K);
X_k^m:X(m),X(m+k),...,X(m+[\frac{N-m}{k}] \cdot k) m=(1, 2,...,k)

Step2:计算L_m(k)

L_m(k)=\frac{1}{k}\cdot{\frac{(\sum_{i=1}^{\lfloor\frac{N-m}{k}\rfloor})|X(m+ik)-X(m+(i-1)k|)(N-1)}{\lfloor\frac{N-m}{k}\rfloor k}]}

Step3:求均值

\langle L(k) \rangle=\frac{1}{k} \sum_{m=1}^kL_m(k)
我们知道,
\langle L(k) \rangle \propto k^{-FD} \Rightarrow FD=-\lim_{k \rightarrow \infty}\frac{\log\langle L(k) \rangle}{\log k}

代码实现

# In[1]: Load some data
import _pickle as cPickle
x = cPickle.load(open('data_preprocessed_python/s01.dat', 'rb'),encoding='bytes')
arr_x = x[b'data'][0,0]

# In[2]: Constant
import numpy as np
N = arr_x.shape[0]
K = 8063

# Subsequence
from math import floor, log
L = []
for m in range(K):
    sub = arr_x[m : N : K]
    Length = sub.shape[0]
    temp_sum = 0
    for i in range(1, Length):
        temp_sum += abs(sub[i] - sub[i-1])
    temp_sum = temp_sum * (N-1) / (Length * K * K)
    L.append(temp_sum)

存疑:有关K的取值问题,根据公式,希望K越大越好,但是现实中的序列数据都有一个固定的长度N,那么K是取N-1吗,或者是说,作为一个输入的特征,只要对每一个样本选择使用相同的K,就可以达到提取特征的效果了?

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,576评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,515评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,017评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,626评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,625评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,255评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,825评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,729评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,271评论 1 320
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,363评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,498评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,183评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,867评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,338评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,458评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,906评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,507评论 2 359

推荐阅读更多精彩内容

  • 文章作者:Tyan博客:noahsnail.com | CSDN | 简书 声明:作者翻译论文仅为学习,如有侵权请...
    SnailTyan阅读 5,097评论 0 8
  • #1996 AHSME ##1996 AHSME Problems/Problem 1 The addition ...
    abigtreenj阅读 1,412评论 0 0
  • 算法和数据结构 [TOC] 算法 函数的增长 渐近记号 用来描述算法渐近运行时间的记号,根据定义域为自然数集$N=...
    wxainn阅读 1,067评论 0 0
  • 文章作者:Tyan博客:noahsnail.com[http://noahsnail.com] | CSDN[...
    SnailTyan阅读 2,501评论 0 4
  • 标签: PRML; 核函数 备注:文中可能存在错误,敬请指正。 声明:本文主要整理思路,原创参考资料列在文末,在...
    zjdxwsn阅读 754评论 0 0