基于FPGA的DDS设计方案(一)

The furure belongs to those who believe in the beauty of their dreams

未来属于那些相信梦想美好的人们


基于FPGA的DDS设计方案

1 DDS技术简介

  • 随着电子技术的不断发展,传统的频率合成技术逐渐不能满足人们对于频率转换速度、频率分辨率等方面的追求,直接数字频率合成技术应运而生。

  • 直接数字频率合成技术(DDS) 是把一系列数据量形式的信号通过D/A转换器转换成模拟量形式的信号合成技术。DDS具有很多优点,比如:频率转换快、频率分辨率高、相位连续、低功耗、低成本与控制方便。

  • DDS技术满足了人们对于速度稳定性的需求,但是在一些控制较为复杂的系统中,DDS专用芯片不能很好的贴合要求。利用现场可编程门阵列(FPGA)实现DDS具有很大的灵活性,基本能满足现在通信系统的使用要求。

2 DDS结构原理

2.1 基本结构

DDS基本结构框图主要由参考频率源、相位累加器、ROM查找表、DAC转换器、低通滤波器等构成。

DDS基本结构框图.png

相位累加器以一定的步长做累加, 而波形函数存储在ROM查找表中, 将相位累加器输出的相位值作为地址,寻找存储在ROM查找表中的波形函数的幅度值,从而完成相位到幅值的转换。其中,参考频率源一般是一个晶体振荡器,要求具有高稳定性,用于DDS中各部件之间的同步。

2.2 基本原理

DDS Core结构图.png

上图为DDS Core结构图,∆θ是相位增量(对应图1中的频率控制字K),B∆θ 为相位累加器的位数,clk是参考时钟(对应图1中的参考频率源),A1、D1构成积分器(相位累加器),θ(n)是相位累加器输出的相位,Q1为量化器,用于将相位累加器位数与查找表地址之间的匹配,ϑ(n)为查找表输入地址,Bϑ(n) 为查找表输入地址位数,T1为查找表。

下面介绍DDS设计过程中常用到的公式,主要是输出频率公式及其变形。

  1. 输出频率

f_{out} = \frac{{f_{clk}}{∆θ}}{2^{B_{θ(n)}}}

  1. 相位增量

{∆θ} = \frac{f_{out}2^{B_{θ(n)}}}{f_{clk}}

  1. 频率分辨率

∆f = \frac{f_{clk}}{2^{B_{θ(n)}}}

  1. 相位累加器位数

{B_{θ(n)}} =|{log}_2(\frac{f_{clk}}{∆f})|

3 基于FPGA的 DDS实现

For example:

设计一个参考时钟为100MHz,频率分辨率要求能够达到0.03Hz,输出sin信号频率为5.00000005MHz、查找表地址12位;

理论分析:

已知频率分辨率∆f与参考时钟f_clk,带入相位累加器位数公式计算

B∆θ = 31.634318

由于位数为整数,取整数32,所以实际的频率分辨率为

∆f = 0.023283064365386962890625Hz

将其带入相位增量公式计算,取整数

∆θ = 21474836694.7483648≈21474836

相位累加器输出32位,而查找表输入地址为12位,取相位累加器高12位作为查找表输入地址

3.1 利用RTL实现DDS

使用matlab产生sin⁡(θ)数据,θϵ[0,π],点数为2^12=4096,并保存在FPGA的memory中。

wid = 12;
len = 2^wid; 
amp = 10000;
t=0:2*pi/len:2*pi - 2*pi/len;
y = round(sin(t)*amp);
plot(y);
matlab生成sin信号.png

相位累加器就是一个积分器,很容易用FPGA实现。最终FPGA仿真结果如下,clk为参考时钟,phase为相位累加器输出,addr为查找表地址,cos_i、sin_q为信号输出:

DDS RTL仿真波形.png

3.2 利用Xlinx DDS IP实现

上述已经对DDS理论进行了详细概述,利用Xlinx DDS IP实现上述例子相对容易的多,只需要填入对应的参数信息。

DDS IP配置界面1.png
DDS IP配置界面2.png

需要注意的是,输入相位端口S_AXIS_PHASE与输出信号端口M_AXIS_DATA的格式,通过设计界面的Information查看,CHAN_0_POFF为初始相位,没有特殊要求一般设置为0,CHAN_0_PINC为相位增量∆θ。

数据端口格式.png

仿真结果如下图所示:

DDS IP仿真波形.png

4 DDS用途

DDS用途非常广泛,后续会利用Xlinx DDS IP设计一些有趣的信号,例如线性调频信号、非重复扫描系统等。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容